[image: image1.png]N 2

T: Diseno de un lenguaje para menipulacion simbo
datos y Ce su procesador correspoundieutc (CONVERT: Design of
a ianguagce for symbolic manipulation of data and of the cor-
responding procpsso*) by Adolfo Guuman Arcnas, TESIS presen-
tada para obiener el Titule de Ingeniero en Comunicaciones y
Electronica - 1965 (THESIS submitted to obtain the title of
Communications and Electromics Engineer - 1965), Escuela
Superior de 'ngen*erwa Mecanica vy Electrvca (1.P.N.), partial
translation ction and Chapters I-IV). Translated

from the Spanish (November 1965) by Leo Kanmer.

FH R KN N XN - ¥ e e N ““4‘ Ko K N G He K e K K K I KWW NN KRR NN
FEEAEEE NN e AEE e LR PR TR R A A D J R R AR SR g SR o f
KX KR KR KA **‘)‘"‘**** PR R L EL EEE SR L LT R T E T TR B

INSTITUTO POLITECNICO NACILONAL i

¢conver t

DESIGN OF A LANGUAGE FOR SYMBOLIC MANIPULATION OF DATA

AND OF THE CORRESPONDING PROCESSOR

%
3
|

by

Adolfo Guzman Arenas

THESTS submitted to obtain the title
of Communications and Electronics Engineer

1965

» COLLEGE OF MECHANICAL AND ELECTRICAL ENGINEERING

[image: image2.png]CHAPTER I

SHORT DESCRIPTION OF LISP

[image: image3.png]INTRODUCTION

CONVERT is a programing language suited for the
symbolic manipulation of objects, recursive, operating with
lists. It is based on the recognition of patterns, models
or structures in an expression and in its corresponding change,
modifiication or substitution; it is capable of carrying out
arithmetic operations as well as information input and output
commands .

The idea of CONVERT as a programing language is due
to Dr. H.V. Melntosh, who began working on it some time ago;
the languame, and with it the propgrams, have undergone radical
modifications, dictated primarily by the experience gained
when working on specific examples. Finally, in February 1965,
we presented a "stable" version of the processor, which was
implemented in LISP 1.3 of Stanford University, California
(Reference 8-le; this article constituted, before this Thesis,
the main source of information on this language), in the
IBM 7090 =system installed at the Computer Science Center of
that university.

Since then, the language has been slowly absorbing
modifications and additions which meke it -- in my opinion --
more flexible and versatile, until it assumed its present
form.

Currently, CONVERT operates in the IBM 709 system of
the Instituto Politecnico Nacional de Mexico (National
Polytechnic Institute of Mexico) and on the AN/FSQ-32 com-
puter of System Development Corporation, Sania Monica,
California. In the latter, it operates through a TELEX link
to the Time Sharing System (which provides for the computer
to carry out programs of a large number of users simultane-
ously) of the Q-32.

The CONVERT processor is written in LISP, by which
its implementation becomes facilitated in systems already
capable of processing this language.

Description of the Thesis

The Thesis consists of 8 chapters. The first chapter
briefly describes LISP.

The CONVERT language is described in Chapter IT:
patterns and skeletons. Some examples will be found in
Chapter V, while Chapter IV explains how to operate with
the CONVERT system.

Chapter III is devoted to an explanation of the way

[image: image4.png]2-0.2

COMPOUND PATTERNS 2-6.3

Example: X = (S == 5), L = {5 SUB =ATO=) is a
pattern which compares with a list whose
extremes are sets containing the same atoms.

Applied to .

r s L] N R »
E= (((a) v (B) 2 (c) 3 3) (g) 1) RR (3 (M) (&) U 3 (¢) 2))
we obfain the result (5 VAR (U 23 3)). -

Atom whose mode is MSU. It operates similar to the previous

mode, however, each time it compares, it forms a list
with the elements selected, yielding as a value the
intersection of these lists. It does not require that
the same elements be obtained by different comparisons,
except that it accepts the maximum sub-set common to all.

EXAMPLES

2-6.3

(=0R=

(=AND=

{=x0T=

ATOMS REPRESENTING SUB-SETS. TABLE OF EXAMPLES.
X = (5 0 8)

€ L [(5SUB =ATO-) (S MSU=ATO-)
(8 08 F £
a8 croma en 1S VAR(A 8 ©)) | (s VAR {A B C),

i
(A (6)8 CITICIOUMIA CIGHTIC BN (5 VAR{A 8 G cpi(s VAR (ABCCY)

CA B C1oBMNIA DY F (s var (A B))

COMPOUND PATTERNS

These patterns allow boolean combinations of patterns.

P1 P2 ...) For this pattern to have similarity with E,
when at least one of the patterns P1, P2, ... nust
compare with £, The first similarity, together with
its ddentification of sub-expression, is accepted.

P3 P2 ...), where P1, P2, ... are patterns. This
pattern will compare with E if none of the P; fails

to compare with E: E must be similar to each omne of

the patterns P1, P2, ... If any variables are identi-
fied with expressions, the same definitions must satisfy
all the patterns Pj: the dictionary accumulates.
Example 1., (=AND=) is equivalent to == [any expression],
P) The pattern P compares with E, and.we assume as the
value of RESEMBLE the odExxred wadboe of the resulting
value. conJrrse

[image: image5.png]the processor operates, i.e. how it meets the linguistic
requirements spelled out in detail in Chapter TII.

A discussion, glossary and references appear in the
last part of this Thesis.

D0000600000000000000000000000000000000C00000000000000000

Translation supplied by

addijs - b
CRENS INT
o s,mERNATIONAL
o Park. Calis gqnon USa

Te
ol (';1 5) 322.6733

aadistran menlopark

[image: image6.png]2-6.3 COMPOUND PATTERNS: EXAMPLES 2-6.3

Comierse
wlye of L = ¥
tondeme OPORMRDO wodew of T = present L (dictionary)
Example 1. X = ((=NOT= A) ===) will m@
comparc® with o list which has some elenent
different from A,
X' = (=NOoT= (A ===)) will B comparel
with a list which-does not contain the
element A.
It is assumed that complex patterns can be "simplified"
and read more easily if additional patterns arc de-~
fined in L; furthermore, we can apply the common rules
of boolean algebra, as well as the De Morgan theorem,

EXAMPLES .

The pattern which compares with the list containing
A or B, but not both, is
X ="{=AND= OR= (=NOT=" (=== A ===)) (=NOT= (=
(=0R= A B} ===))
which is reduced by the De Morgan theorm to
X = {=AND= NOT= (=AND=
(=0rR= A B)

If we define atoms NA and NB in the L dictionary as
NA PAT {=== ===); NB PAT (=== B ===), the previous
pattern converts into
X = (=AND= (=NOT= (=AND= NA NB)) {
which may also be written in the form
X = (=AXD= NAB {=== (=OR= A B) =)) with the additional
definition NAB PAT (=NOT= (=AND= NA NB)).

(=0m= A B) ===))

Example 2. The use of a connectableixgriable as the
last pattern of an =AND= allows us to recall expression E
which had similarity; e. g.: ~
(RESEMBLE (QUOTE (=AND= (
QUOTE (Y UAR *;)

=ATO= R) Y))

QUOTE (B A R) = (Y VAR (B A R)); the same
example applied to E = ((B (a) R) yields ¥ as a result.

TABLE OF EXAMPLES OF COMPOUND PATTERNS

L= (Y WAR x)

X Elle OR D &) 8))

(= AND= BROT+ =ATO=)Y) (¥ VAR{G O R D A))| F o var 0afr var g1

(=OR=GNOT= xATOa}Y) i W x) (Y VAR BHIY VAR 33[(Y UAR 2

(AN (=NO T= xATOSF (KOT» GI) (v UaR 3 i F E o VAR |

[image: image7.png]1-1 EXPRESSIONS, PRIMITIVE 1-2

The readers familiar with LTISP may omit this chapter.
Also described in some detail is MBLISP.

If more complete information is desired, the reader
may resort to References 8-1, 8-2 and 8-3.

LISP, originally developed by McCarthy (Reference 8—1a),
is a computer language with the following characteristics:

1. Symbolic manipulation of objects. It processes information
which generally does not have any numerical meaning
and in whose manipulation arithmetic operations are
not essential.

2. Recursive. Applies recursive functions to lists. See

ction 1-6.

3. Logic.

4, Operates with lists. All LISP notations consist of lists;
a list is technically defined as a series of elements
contained within parentheses. The elements contained
in a list may in turn be lists or atomic symbols. An
atomic symbol, the ATOM, is an uninterrupted succession
(by parentheses or blank spaces) of characters available
in a tape-punching machine. An example of 1list is
((AB) THREE (SI GA)).

Fxamples of atomic symbols are 5432 1BANG DERIVATIVE
One (or more) blank spaces separate one atom from
another; between an atom and a list or between the
latter no blank spaces are necessary.

The lists are chains of elements with balanced
parentheses.
() is the zero list; it has no elements.

1.1 Expressions.

An expression is an atom oxr a list. Example: A,
(B A (C)), but not C A M I, the latter being a fragment: the
content of a list.

If the list L = (E S (L) M E), then the expressions
E, (I), S, M, are -- individual -- elements of L, but not I,
although I is the [only] element of (I}.

1-2 Primitive Functions.

There are five primitive LISP functions as follows:

{CAR X). Its value is the first element of list ‘X, if the
value of X is a list. If X = (A B C D), (CAR X) = A.

(CDR X). TIts value is the list X without its first element.

[image: image8.png]1-2 PREDICATES, COMPOSITION OF FUNCTIONS -3

ir X = (A B C D), :
§CDR xg 5}3 C D). IfN

%R), M = (A B C), then
CDR M B c); (CDR N)

o

[)

The car and the cdr of an atom are not defined; neither
is the cdr of a vacant list. CDR always initiates a list
as a value. . -

{cons X Y) 1. Y list

Its value is a new list formed by the elements of Y
added in front of X. If X = (A B), Y= (C D), then
(cons X Y) = ({A B) ¢ D) (CoNs' Y x) = ({(¢ D) A B).

Predicates.

Functions whose value is T (true) or F (false).

(ATOM X) = T if X is an atom; otherwise F.
(EQ X Y) = T if X and Y are both equal atoms; i.e. they are
in fact the same atom; otherwise F.

1-3 Other Functions.

Other functions are frequently useful, for which pur-
pose they exist as machine functions, primarily to speed up
the computation.

(NULL X) = T if X is the same null list.
otherwise F.

(QUOTE X) its value is its argument (without evaluating).
If X = (A B C D), then zQUOTE X) = X
QUOTE (1 2 3)) = (1 2 3)

(LIST L3 L2 ...) Its value is a list containing the elements
L%, L2, ... in that order. If A = (A B C), B= (C D E},
gLISTA B) = ((A B C) (C DE))

LIST) = ()

(NOT P) P must be predicated.

= T if P is F
otherwise F.

Composition of Functions.

Assuming that each of the functions described above
(except QUOTE) evaluates first its arguments, i.e. it asso-
ciates with them their value, functions may be composed in

[image: image9.png]-4 CONDITIONAL EXPRESSIONS, BOOLEAN FUNCTIONS 1-5

the usual manner; this means in order to evaluate a function,
first one evaluates its arguments, and the function is applied
to the result(s). Examples. X = (ABC); Y= ((12 3)4)
CONS (CAR X) (CAR Y)) = (A 1 2 3)

CPR (CDR Y))

CAR (CDR xg B

CAR (CDR Y 4

CAR (QUOTE M)) is undefimed (the car of an atom is not defined)
NULL (CDDDR X)) = T

EQ (CAAR Y) (CADR X)) = T
Those of the last examples show the use of the abbreviations
CAAR X), ... (CDDDDR X) for (CAR (CAR X)), ...

CDR (CDR (CDR (CDPR X)))}).

non

1-4 Conditional Expressions.

‘ Conditional expressions constitute a means providing
for bifurcations in the definition of functions.

(IF P Q R) P predicate; Q and R any functions.

Evalutate P. If P is T, evaluate Q, with the result being
the value of the entire expression; if P is not T,
evaluate R.

Note: P is always evaluated,
O0f Q and R, only one is evaluated, depending on the
value of P.

(conp (P1 E1) (P2 E2) ... (Pn En)) P; predicates;
Ej any functions.
If P1 is T, the value of E? is the value of the entire

expression.
If P1 is F, repeat the process on (P2 Ez) etc.

The p4j are analyzed (evaluated) from the left to the
right until the correct ome is found. Then the E; corre-
sponding function is evaluated, it being the value of the
entire expression. No further predicates or expressions are
then evaluated.

If none of the P; is T, the value of COND is undefined.

1-5 Boolean Functions.

(NOT P) =T if P is F
otherwise F.

(OR Pt P2 ...) = F if none of its elements is T
otherwise T

1-3

[image: image10.png]1-6 RECURSION, LAMBDA 1-7

The evaluation of the Pj's is made from left to right;
the first onme that is T is accepted and no further
evaluation is made.

(OR) is always F.

(AND P1 P2 ...) = T if none of its arguments P; is F.
otherwise F.

It is necessary that all predicates be T for it to be T.
(AND) is always T.

The evaluation of the Pi's is made from left to right;
it is assumed that the first is F, with F then being
the value of the entire expression.

1-6 RECURSION,

A recursive function is that which is used itself in
its own definition, although with different arguments. For
example, for natural n, the elevation to the powers XV may
be defined as:

X0 _ x if o = 1
h otherwise x - x®~!

or (EXP X N) = (IF (EQ N (QUOTE 1)) X (TIMES X (EXP,;i(’ (DECR N)))).
Note that every recursive definition has a terminal condition

or one or more final conditions, and one (or more) recursive
conditions; hence, after a finite number of steps, the ter~

minal covdition must be arrived at.

Other examples: factorial

n! =

{1 if n =0
otherwise n + (n-1)!
If X is list the definition of EVEN, one
predicate that asks if X has an even opumber
of elements is

o f{Tirx = ()
(evEN X) = {F is X contains a single element:
{otherwise (EVEN {(CDDR X)).

1-7 LAMBDA, .

An expression of the form x + 2y - 5 is considered a
form, i.e, an expression capable of launching or having a
value when its variables are identified and associated with
values; for example, if

f{x, v) = x + 2y - 5, then . 1]

{1, 2) = 05 £(0, 0) = -5, etec. (2]
in LISP, [1] is expressed by the symbolism

(LAMBDA (X Y) form) .

1-4

[image: image11.png]1-8 LAMBDA*, LAMBDA L, DEFINE 1-9

and [2] by ((LAMBDA (X Y) form)] A1 a2)
which indicates that X = A1, and that Y = A2,

The value of a function of the type
((LamBDA (V1 V2 ... vn) form) A1 A2 ..., An) is calculated
as follows:

1. Al, A2, ... are evaluated,

2. To each Vi we associate the value of the corre-
sponding Aj .

3. With these values assigned to the variables Vi
we calculate the corresponding form,

4, The value of the entire expression is the value
given by the form in e.

For example, if U= (S HIR T), V = ((1) (u))
the value o
(?LAMBDA (AfB) (CONS (CAR A) (CONS V B))) (LIST U v) (caR V)
is ((SHIRT) ((1) (U)) 1), since
A = (LIST U V)gyaiuated = (és HIR ;‘)

(1) (u)

B = (Car Vevaluatea = (1)

1-8 VARIANTS: LAMBDA*, LAMEDA L

((LaMBDA* (V1 va ... Vn) form) A1 AZ ... An) the
difference of LAMBDA, does not evaluate its arguments, except
that it associates V1 with Al, V2 with A2, ... and its form
is evaluated,

((LAMBDA L form) A1 A2 ...)

Evaluates its arguments (of which there is an infinite
number) and forms a list with the results, to which a value
of L is assigned. It then evaluates form, which is a
function of L,

For example, the definition of LIST is (LAMBDA L L)
{see § 7-11.
((LAMBDA* L form) A1 A2 ...)

Does not evaluate its arguments (of which there is an
infinite number) and forms a list with the results, to which
a value of L is assigned. It then proceeds to evaluate form,
which is a function of L,

Example: definition of VAL (3—53), CONVERTERROR (3-8) ,.

1-9 DEFINITIONS

It is possible to associate a number to a function
which will allow us, after having defined this vumber, to

1-5

)

[image: image12.png]1-10 MBLISP CIIARACTERISTICS 1-10

use it (i.e., to use a single atom) instead of the entire
1list defining the function.

This is done with the postulate DEFINE, in the
following manner:
{DEFINE (VUMBER DEFINITYON) (NUMBER2 DEFINITION2) ...)
for example,

(DEFINE (EVEN {LAMBDA (X) (COND ((NULL X) (AND

NULL (CDR X)) (OR)

AND) (EVEN (CDDR X))))
(ExP (LAMBDA (X N) (IF EEQ N (DEC (QUOTE 1))

TIMES X (EXP X (DECR N))))

(POWER EXP)

defines the functions EVEN, EXP and POWER, with the latter
being equivalent to EXP.

The postulate

(AgPLY E¥EN ((ABCDEF) N
apply function \list with arguments’
. number

"will apply" the even function to the argument (ABCDE F),
and the result will be: T.

1-10 MBLISP CHARACTERISTICS

1, INTERPRETER. MBLISP is an interpreter written in machine
language (709), of LISP in basic language; the ine
terpreter is very small, occupying approximately
600 words; the entire processor occupies some 4,000
words, with its distribution being approx1mately as
follows:

600 words for the basic interpreter.

1200 for atoms and permanent lists.

600 for the input and output routine.

1000 additional machine functions,

600 Garbage Collector, primitives, ANXD, IF,
COND, etc.

Its main attraction resides in its small size and in
the fact of having predicate operators, value cells, LAMBDAX,
LAMBDA L; its disadvantage is primarily its speed when com-
pared with a compiler; nevertheless, the A-list of MBLISP
is built by a rule ~- it is really a rule --, to increase
speed to some extent (see § 1-8),

2. ARITHMETIC AND LOGIC OPERATIONS, There is no floating
point arithmetic; only integers of 15 bits are

1-6

[image: image13.png]T-11

3.

4,

i-11

REFERENCES 1-12

processed (less than 32,768), and with them normal
operations can be performed, which will be dealt
with as binary numbers (to be used with mascs, etc.)
or octals.

Arithmetic operations -- and logics -- are
applied to numerals, non-printable atoms; (DEC A),
where A is an atom formed by digits, will produce the
corresponding numeral; for example, (DEC (QUOTE 1))
will produce the numeral 71; (UNDEC N), where N is a
numeral, will produce the corresponding atom capable
of being printed.

ARRAY FLEMENTS. Very rudimentary; static. Divided into

two classes: those which contain lists (or atoms,

but not mixed) and those which contain data (octal
digits, BDC characters, etc), and both types of in-—
formation cannot be mixed within the same array. In
this Thesis additional reference to rules will be
made in Section 2-14, entitled "Operators in CONVERT."

OPERATORS-PREDICATES. Many of these produce T as a value

so that they can be manipulated through AND-OR chains;
they alter permanently the structure of lists; this
means they modify their arguments. TIterative opera-
tions may be performed through the ITER function,
which continues evaluating its argument until it
assumes the value of T (original, page 3-56), and/or
by the use of sequential variables (original,

page 3-52).

REFERENCES .,

MBLISP is described in greater detail in Reference 8-2b,

where many definitions of functions are shown.

The operators are described in OPERATORS FOR MBLISP,

Program Note No. 9, University of Florida, 1963.

Arithmetic operations are dealt with in detail in

INTEGER ARTTHMETIC FUNCTIONS IN MBLISP, Program Note No. 6,
University of Florida, 1963.

1-12

PERMANENT ATOMS PRESENT IN MBLISP.

-

Hollerith character left-hand parenthesis.
Hollerith character comma.
Alphabetic character.

[image: image14.png]1-12

ZER

ZERARR

X
XDR

SWT

STOSET

STORE

STOP

SL

PERMANENT ATOMS PRESENT IN MBLISP 1-12

(ZER N} is T if its argument is the pumeral O
(zero .

(ZERARR N), where N is a decimal number, creates
a rule of N (DEC (QUOTE 0))'s.

Alphabetic character.

Alphabetic character.

(XDR L M) assumes as its value (CDR M), but at
the same time originates a transformation
in M; dits CDR now is L.

(XAR A M) has the value (CAR M), and at the
same time changes the (CAR M) to A.

Alphabetic character.

(VAL X), presently (CAIDR (QUOTE X)) is the
VALue (see original, pages 3-52, 3-53) of X,
which is not evaluated.

Alphabetic character.

Alphabetic character.

(UNOCT N) is the octal equivalent of N and is
an atom.

Is the hollerith equivalent of its numerical
argument, probably an octal number less
than 77 and probably a "legal" hollerith
character. It has the form (UNHOL N).

(UNDEC N) is the decimal equivalent of its
pumerical argument and is an atom.

Alphabetic character.

Alphabetic character.

(SYMTAB N) gives us certain internal directions
(locations), inherent in the MBLISP processor,
affecting work in the system.

(SWT N) examines the switch or interrupter N;
it is T if depressed (om).

(STOSET Z) initializes the primitive STORE
operator to the rule whose title dis Z.

(STORE C) is an operator which stores the
octal digit O in the nearest sequential
location in the rule to which it has been
initialized. The digits are kept sequentially
from left to right in a word, and then in
words of increasing direction. Their wvalue
is T if space remains to store another
digit, or F.

An atom to control the system which causes
3 end~of-file being written out on SYSPOT
and PCHTAP, and calls -- selects -~ the
card reader for the wnext program.

(SL M N) is T if M is strictly less than N. If
M and N are numerics, it questions by
algebraic inequality; if one is pumeriec, it
is used as a test for the relative direction
of the location and the nucleus with respect
to the other, and if both are non-numerics,

1-8

[image: image15.png]i-12 PERMANENT ATOMS PRESENT IN MBLISP’ 1-12

4

it compares their present locatioms in the
memory, and serves as a list of arbitrary
order which may or may not be trusty.

SKIP Causes the APPLY present to be abandoned, that
the temporary registers and the pushdown
list be restored and the execution of the
next APPLY or system command.

SEQ (SEQ X) causes the X atom to assume as its
value the next sequential y in accordance
with the sequencial mode defined., See
original, pages 3-52, 3-53.

SEK (SEK K) is similar to SEQ, however, the se-

quential value is taken immediately, while
for SEQ its value was the old value, and
VAL must be used to obtain the new value.

SDR (SDR L M) causes (CDR M) to become now Lj
it has a value of T.
SAR (SAR A M) causes that (CAR M) now become Lj;

it has a value of T.
Hollerith character / (diagonal, divide).

(blank) Hollerith character blank ~- blank space --,

* Hollerith character asterisk.

s . Hollerith character sign of pesos.

£XOR ($XOR M N) calculates the exclusive OR of M
and N, probably defined as {OCT X).

$WRITE ($WRITE ZS causes the “"buffer" whose title is
7% -- this is an array element —-- to be
entered on the SYSPOT (A-3) tape.

$TIMES ($TIMES X Y) is a function of two values, with

first being the more significant part of
the product X.Y, and X and Y being pumerals.

$READ ($READ Z) reads a SYSPIT (A-2) record in the
"buffer"” array element whose title is Z.
$PUNCH ($PUNCH Z) causes the content of the "buffer"

array element entitled Z to be placed on
PCHTAP (B-4%).
$PLUS ($PLUS X Y) is a function of two values: the
) first is a predicate, T if there has been
no overflow. The second is a sum module

2%x13,

SOR ($OR M N) is OR of M and N, treated as 15-bit
binary numbers.

$MINUS ($MINUS X Y) is a function of two values. The

first is a predicate, T if the difference
x-~y is positive; the second is the absolute
value of this difference.

$coM ($cOM N) is the complement of wumber N of
15-binary bits.

SAND ($AND M N) is the logic end of the two numbers
M and N, 15-binary bits.

R Alphabetic character.

RPAREN (RPAREN) produces the hollerith character) value.

1-9

[image: image16.png]T-12

RAR
RDR
RANSET

RANDOM

P
PRINT

PAUSE

PACSET

PACK

ONLINE
oCcT

N

NUM

NULL

PERMANENT ATOMS PRIESIENT IN MBLISP 1-12

(RAR X L) causes (CAR L) to be converted into X;
its value is X, the new (CAR L).

(RDR X L) causes (CDR L) to be converted into X;
its value is X, the mew (CDR L).

(RANSET) adjusts the RAND operator to its
initial wvalue,

(RANDOM) is a predicate which assumes the value
of T or F randomly each time it is consulted.
It is a pseudo-random operator, which may
be re-initialized by RANSET.

Alphabetic character.

(QUOTE E) assumes as its value the argument E
without evaluation.

(QDR X L) causes (CDR L) to be converted into X;
its value is L, the new list.

(QAR X L) causes (car L) to be converted into X3
its value is L, the mnew list.

Alphabetic character.

(PRINT X) is an operator whose value is X,
however, which causes the argument X to
appear also in SYSPOT (tape A-3).

(PAUSE) causes the computer to perform an HPR;
it is a predicate whose wvalue is T.

(PACSET Z) is an operator-predicate which assumes
the value T and which adjusts the operator
PACK to the array element whose title is Z.

(PACK C) is an operator-predicate which stores
the argument C, probably a hollerith charac-—
ter, in the next sequential position in
the array element to which it has been
initialized, If more space remains, it
assumes the value of T.

The letter 0O; alphabetic character.

(OR P1 P2 ... Pn) is a predicate of a variable
pumber of arguments evaluated until a T
is found. Those that follow the argument T
may be it undefined. If no correct (T) ar-
gument is found, its valuc is F -- false —--.

(ONLINE P) is an operator which causes the
messages printed destined for SYSPOT to
print their last line on the printer con-
pected to the 709,

(OCT N) is the octal equivalent as a numeral of
the atom it has as an argument. Probably
this atom is a chaip of digits which does
not include 8 or 9's.

Alphabetic character.

(NUM X) is a predicate which is T if its argu-
ment is a pumeral. It is false if its argu-
ment is a list or another type of atom.

(NULL X) is a predicate which assumes the value
of T if its argument is an empty list. An

T~10

[image: image17.png]1-12

NOT

M
L
LPAREN

LAMBDA

LABEL

LABEL*

-

ITER

INCR

IFr

HGFE
EVAL

EQ

PERMANENT ATOMS PRESENT IN MBLISP 1-12

empty list is pot an atom. It is false
foxr any other list or for atomic arguments.

(NOT X) is a predigate which is false if its
argument is true, and it is true if its
argument is false. Any other argument
remains without change.

Alphabetic character.

Alphabetic character.

(LPAREN) is a function whose value is the
hollerith character "(." Like blanks
and right-hand parentheses, they canmot
be quoted. .

LAMBDA is a sign used to introduce a function
definition in terms of a form.

is another signal used to introduce a function
definition within the program.

LABEL* is an alternative form of LABEL used
when the definition of the functiom is to
be computed, rather than to assume it as
quoted.

Alphabetic character.

Alphabetic character.

Alphabetic character, minus sign.

Hollerith character, right side parenthesis,
which is the value of (RPAREN).

Hollerith charactexr period.

Hollerith character.

(ITER P) continues evaluating its argument P,
probably a predicated operator, until it
assumes the value T. The value of ITER is
then T.

(INCR N) adds 1 to its argument, probably
numeric.

(IF P Q R) evaluates the argument P, and if it
is T, evaluates the argument Q, otherwise
the argument R. The non-evaluated argument
may be indefinite.

Alphabetic characters.

(EVAL B ALIST) evaluates the avgument E with
respect to the ALIST designated. Gives
the programer access to the interpreter,

(EQ X Y) is T if X and Y are at least one atom
and are the same atom, If X and Y are
both lists, a T value is trusty but an
answer F is not. (EQ X Y) is T if both X
and Y have the same representation in the
machine (kept in the same location).

Alphabetic character.

(DO F A1 A2 ... An) calculates (F A1 A2 ... An),
but its value is T. Used to convert an
operator into a predicated operator.

=11

[image: image18.png]1-12

DISSOC

DSCSET
DISSET

DISINT

DEFINE

DEC’

DECR

CONS

COND

CAR-~CDR

BLANK

ATOM

ARRAY

APPLY

N
-
PERMANENT ATOMS PRESENT IN MBLISP 1-12

(DISSOC) produces the mext three bits in the
form of am atom and in the range 0-7 of the
array element to which it has been initialized.
If no octal digits remain, its value is an
empty list.

(DSCSET 7z) initiates DISSOC with the array
element whose title is Z.

(DISSET Z) initiates DISINT under the array
element whose title is Z.

(DISINT) produces the next character of the
array element to which it has been initialized.
If no characters remain, whether the array
element has been terminated or because it
has found 77,, its value is ().

(DEFINE (N E) (N' E') ...) causes the atomic

symbols N, N', ... to be considered func-
tions in accordance with definitions
E, E', ...

{DpEC N) transforms an atomic argument into a
pumeral which is its decimal equivalent.
Probably N is a chain of characters repre—
senting arabic numbers: 12 3 4 56 78 9 0

(DECR N) subtracts 1 from N, assumed to be a
numeral.

Alphabetic character.

(CONS X L) forms a new list adding X in front
of L.

(conp P1 F1) (p2 F2) ...) examines sequentially
each argument in turn. For the first correct
P;, the associate function F; is evaluated.
If no correct predicate exists, it is an
error. Both predicates and functions fol-
lowing the selected pair may be indefinite.

combined, up to a length of 4., Also included are
the combinations CIDR CIIDR CAIDR CAIIDR;

X signifies INCR.

Alphabetic character.

(BLANK) assumes the value of the blank hollerith
cnaracter.

Alphabetic character,

(ATOM X) is a predicate which is correct if its
argument is an atom, including numerals as
a special case., It is false when applied
to any list, including the empty list.

(ARRAY & E) has an argument which generates an
array element (e.g.g ZERARR) whose title
is then considered the value of A. This title
is valid with respect to the name A while
expression E is evaluated whose value is that
of the postulate ARRAY

(APPLY F L) is the universal LISP fupnction that
applies the function F to its list L of
arguments. ~

i-12

[image: image19.png]1-12 PERMANENT ATOMS PRESENT IN MBLISP 1-12

AND (AND A1 A2 ... An) is a predicate which is T if
all arguments are correct, including none.
The arguments are evaluated sequentially
until the first wrong ome is found, and then
the value is F with the subsequent argu-
ments possibly being indefinite.

ALIST (ALIST) produces the present ALIST of the system
in use. It is primarily used together with
EVAL, however, it may also be used as a
diagnostic and for amnalytic purposes.

+ Hollerith character plus.

' Hollerith character apostrophe.

= Hollerith character equal sign.

9876543210 The Hollerith characters corresponding
to Arabic numbers.

2NDVAL Operator which destroys the first value of a
function of two values.
1STVAL Operator which destroys the second value of a

function of two values.

SEVENTYSEVEN (SEVENTYSEVEN) has the hollerith character
value 77 (non-existent), used to terminate
print-names of atoms.

SGARLIS ($GARLTS) is a function of the system which
gives us the direction of the garbage-~list;
this means the list of items salvaged
during a garbage~collection. It is used to
protect the VALues of atoms.

$DIVIDE ($DIVIDE X Y) has two values, the first being
the quotient X/Y and the second the re-
mainder,

REINTEGRATE (REINTEGRATE L) transforms the argumeni L which
is a list of hollerith characters into the
atom formed by the union of all. This atom
is inserted or is put in its corresponding
spot on the list of all atoms.

NEXTJOB (NEXTJOB) is a system function which writes an
end-of-file onto SYSPOT and onto PCHTAP
(A-3 and B-U4), passes over the next end-of-
file in SYSPIT (A-2), rewinds and reads the
SYSTAP (B-7) tape expecting to carry out
another LISP operation.

LISPTAPE (LISPTAPE) is a function of the system which
generates a new tape of the system as
LSPTAP (B-3).

LAMBDA* A variation of LAMBDA which previously did not
evaluate its arguments.
ENTITLE The function of the system used to create an

appropriate title for a special array
element class.

COMMENT *(COMMENT : : :) is not taken into account by
the system, thus allowing for the inser-
tion of commentaries in the program.

1-13

[image: image20.png]1-12 SYSTEM FUNCTIONS, FORMS THAT ARE NOT FUNCTTIONS 1-12

SYSTEM FUNCTIONS which may be used only at a higher level and
which may be re-defined at lower levels as functions,
or comnected to values such as atoms:

APPLY

COMMENT

DEFINE

LISPTAPE

NEXTJOB

STOP

All the other names which appear in the position of the
function name act as a STOP.

NAMES OF FORMS THAT ARE NOT FUNCTIONS

LAMBDA

LAMEDA*

LABEL
LABEL*

1-14

[image: image21.png]CHAPTER II

DESIGN AND DESCRIPTION OF THE CONVERT LANGUAGE

[image: image22.png]2-1 FORM OF THE ARGUMENTS, DEFINITIONS 2-1

Presently the CONVERT language is being implemented by
LISP functions which carry out the necessary operations, by

way of an interpretation process, to complete the corresponding
transformation.

The principal function is (CONVERT M I E R), which
produces a mew expression as a value which is the result of
modifying expression E according to the changes indicated by
the arguments M, I, R,

2-1 FORM OF THE ARGUMENTS

The argument R has the form of a collection -— 1list ~-
of sets of rules and their corresponding names; it is a cycle 2
dictionary of the form
(cr ({====)c2 (=

. — —_—
set C1 set C2

where the atoms Cj are the names of the sets to the right;

these sets contain rules.

A RULE is a list that contains elements, with the

: left-hand portion being the pattern EP; and
the right-hand portion the skeleton (S).

A PATTERN is an expression used for comparison; it
contains certain symbols which are interpreted
in a special form; in general, when comparing
a pattern with any expression, we obtain T if
there is similarity or F if not. The comparison
is carried out by the function RESEMBLE.

A SKELETON is an expression used to be filled or
substituted; certain symbols here represent
"blanks" which will be replaced by expressions.

So that a more accurate view of R is:

R=(o1 ((25)(p8) (P8) ..)c2 ((25) (P3)) .. .)
—rh

first set T
number of the second set _J 1 .

first rule of the second set !
skeleton of the first rule of C2 J
pattern of the second rule of C2

The argument M is the first of CONVERT. It has the
form of a cycle 3 dictionary; each cycle consists of a NAME,
a MODE and a MEMBER.

MODES are atoms indicating the relationship -- the type
of relationship -~ that exists between the
NAME and the MEMBER.

NAMES are atoms or singlets (lists containing one atom)
which specify that this atom will be connected

[image: image23.png]2-2 CONVERT OPERATION, THE OTHER SETS 2-3

to two quantities, two expressions: MODE
and PARTNER.
PARTNER is an expression tied to a NAME,

Consequently, the dictionary M is

NAME; MODE; PARTNER] Np Mp Sz ...), for example,
A PAV (=OR= 1 2 4 8) (xXX) SKEL (B A ¢) (YYY) CNT 0)

The argument I is a simple list (cycle 1 dictionary)
of NAMES, such as (X Y (222) V).

The argument E, the third of CONVERT, is the expression
we will convert.

®
nou

2.2 OPERATION

COXVERT applies the first set of rules of R to the ex-
pression E, examining sequentially its rules: each pattern
is compared with E by way of the RESEMBLE function which
determines the way in which this comparison is made and makes
use of the information provided by the M and I dictionaries;
this information consists of attributing to certain atoms
associate properties (PARTNERS), by way of MODES, .or by
declaring them connectable, i.e. capable of comparing with
any expression,

If there is a resemblance, the RESEMBLE value is a
dictionary which contains information on the identified
sub-expressions of E; then this information is substituted
in the skeleton of the rule that was successful by way of
the REPLACE function.which specifies the form in which the
substitutions are made. N

If there has been no resemblance between a pattern and
the expression F, in which case the RESEMBLE value is F (FALSE),
the next rule is applied, and so on until a rule is found
whose pattern matches with E; it is then substituted in the
corresponding skeleton.

The value of (CONVERT M I E R) is the skeleton,
properly substituted, of the rule whose pattern matches with E.

If we arrive at the end of the set of rules, and none
of them has been successful, the CONVERT value is the ex—
pression E without modification,

2-~3 WHAT ABOUT THE OTHER SETS?

R is a collection of sets (see §2—1). Initially, the
.

2-2

[image: image24.png]N
)
&=

INTERNAL CHANGES, RESEMBLE 2-5

first rule of the first set is examined. The rules belonging
to the other sets are omnly used if they are called upon during
an intermediate phase in the conversion process, if an addi-
tional conversion of a partial result requires its use. Foxr
this purpose the skeletons =REPT=, ¥CONT¥, etc., are used
(original, page 2—32).

Furthermore, other skeletoms allow us to construct an
expression with the data obtained in the resemblance, and to
apply the same set of rules where these skeletons are located
by which the recursion becomes possible (original, page 2—32).

2-4 INTERNAL CHANGES

At the start of operations, the M and I dictionaries
are merged into a single one of cycle 3 by means of ITLZI
original, page 3-3%), which is more adequate for being used
by RESEMBLE.

Another functiom, {EDIT L) [original page 3-90],
slightly modifies the list which launches RESEMBLE as a
value, whenever there exists similarity, into a more useful
form to be used by REPLACE.

We shall now describe RESEMBLE and REPLACE, which are
the functioms which manipulate the left-hand and the right-
hand half of the rules.

2-5 (RESEMBLE X L E)

(RESEMBLE X L E) is a functiop used to recognize
patterns by means of which two expressions X and E may he
compared. In general, these expressions are simply compared
sub~expression by sub-expression, and it is hoped that their
constituent atoms are equal and that they are arranged in the
same manner so that these expressions would be compared by
the EQUAL function of LISP. Nevertheless, certain special
symbols may occur in expression X, which indicate that we
must interpret the correspounding portions of E in a special
way. Furthermore, these symbols or special sub-expressions
frequently indicate that a certain expression must occur at
various points in the expression E, and we are able to learn
the identity of these sub-expressions (of E), which will
provide for a similarity between X and E. For this reason,
RESEMBLE uses the argument L, which is a dictionary of these
sub~expressions that have been icentified, as well other
special terms. To facilitate the recursive definition of
RESEMBLE, this same dictionary, properly modified or increased,
assumes its value, whenever there is similarity, or the value F
if neot. -

[image: image25.png]2-3 IMPORTANT MODES IN RESEMBLE 2-5

The patter.s X consists of basic patterns which, in
turn, may constitute more complex expressions upon being
written in the form of lists within lists.

I, is a dictionary of cycle 3:
1. = {NAME{ MODE; PARTNER; NAM2 MODp PARTNER2). L defines
the names N1, N2, ... , representing the partner S¢, S5, ... ,
under the mode {1, M2, ... RHach time an Nj appears in X,
its partner S is compared with the corresponding part of
E; the way in which this comparison is made depends on the
mode Mj.

The definitions made in L are used during the entire
process of comparison; there are also ways of making tempo-
rary defipitions (see =DEF=, original, page 2-14).

The most important modes in RESEMBLE are

TAR ' Indefinite variable (connectable variable), which compares
with anything, after which the mode changes to VAR, with
the PARTNER now being the compared quantity.

VAR Defined variable. The expression with which it is com-
pared must be equal to its partner.

PAT The partner is a pattern which is compared against E
instead of the atom.

PAV Combines the PAT and UAR modes in the sense that its
PARTNER is a pattern compared with E, and i¥ there is
a similarity, PAV changes to VAR, and as a partner it
retains the E compared.

SUB The partner is a pattern that defines a sub-set of the
expression E compared. The mode then changes to SEQ
with the pattern ahead of the sub-set it determines.

MSU Same as SUB, except that the mode changes to MSS.

SEQ CAR of the partner is a pattern which defines a
sub-set of the expression E being compared. This sub-
set must be the same (the order of the elements is
immaterial) as the CDR of the partner.

MSS Same as SEQ, except that the intersection of the sub-set
of £ and the CDR of the partner replace the CDR of the
partner.

These modes are self-explanatory except possibly the
last two. The mneed of these patterns as well as the modes
operating with sub-sets was W pointed out by Prof. McCarthy,
who gave us the example of a program of algebraic simplifica-
tion, where it is desired to work with a set of coefficients
of a term in a polynomial, for example, and assuming that the
multiplication is commutative, we would not take into account
if these coefficients appear later on in the same order or

[image: image26.png]2-6 PATTERNS MATCHING EXPRESSIONS 2-6.1

rearranged. MSU is a variation on the same theme, where we
seek the maximum sub-set of coefficients common to a certain
number of terms.

Presently, the dictiomary may contain atomic NAMES
as well as combinations of lists containing a single atom.
These are the ownes that give CONVERT ijits particular character
of a processor of chains instead of a processor of lists.

If an atomic NAME is found in the dictionary, it is
assumed that it corresponds to a single expression E to
which it may or may mnot be similar. A singlet {list of a
single atom) cannot occur alone as a pattern, but only as
part of a greater pattern. This greater pattern must be
compared with a list where the listed atom -- singlet —~ may
represent a connected segment of this list, in other words,
a FRAGMENT. Fragment variables may occur in the UAR, VAR
and PAT modes, among others. In this case [PAT], the symbol
represents a fragment of the origimnal pattern, which is in~
serted as a fragment, rather than as an element. VAR means
that the symbol represents a fragment whose elements must be
equal to the corresponding elements of E, while UAR means
that we are searching for an unknown fragment of expression E.

A fragment variable in the UAR mode forces RESEMBLE
to carry out an ewmormous inspection since, if the same
variable occurs more than once, its original estimated
value will be continuously revised for all the possible
fragments, beginning with the empty fragment up to the first
which matches is found {and consequently the shortest one).

In addition to the variables that correspond to frag-
ments or expressions, there exists a number of other funda~
mental patterns, based on which a more gemeral pattern may
be constructed.

2-6 PATTERNS MATCHING EXPRESSIONS

We refer to patterns that compare with a complete
expression as differentiated from others which have simi-
larity with parts of fragments of lists. These patterns
Ewhich match expressions) may occupy location X in
RESEMBLE X L E), while those which match fragments must
appear within X; X must be a list, being unable to have an
"independent" existence.

2-6.1 TERMINAL PATTERNS

These are simple patterns that do not require a later

2-35

[image: image27.png]2-6.1 ARRANGEMENT PATTERNS 2-6.1

comparison to determine if the expression they are being
compared is similar to them.

== Compares with any expression, atom or list.

=ATO= Compares with any atom (1nclud1ng numeral)

=NUM= Compares with any numeral

an ATOM not defined in L Compares with another identical
atom.

an ATOM whose mode is VAR There exists a similarity if its
partner and the expression E are equal
to each other (under the LISP EQUAL function;
original, page 3-17).
é Compares only with another empty list.
=QUO= P) Similarity is found if P and expression E are
equal (under the LISP EQUAL function; orig-
nal, page 3—17). It does mot recognize in P
symbols with any special significance.
(=DEC= P) P is transformed into a numeral and then compared
. by way of EQ afid E, P is an atom.
It will match B if E is the pumeral
corresponding to the atom P,

ARRANGEMENT PATTERNS

These are used to discover the size or "order" of a
pumeral or,if it is a list or an atom, of jits corresponding
numeral., :

=0RD= Matches with a list whose elements are in an
ascending order, or beter, in a non-
descending order. For example, (1 2 3)

or (1 2 2),
STL L mode = (... A STL 8 ...): A will match with any atom
strictly smaller than [its partner] 8.
STG mode For example, L = (B STG 9); then A ~- in X-—-

will match with any atom strictly larger
than {its partner] 9.

In the STL and the STG modes, the partners are vumerals oxr
atoms formed by digits.

The arrangement patterns have their main use in the
Jjoint dinterrogation of numerals or atoms.

EXAMPLES

(RESEMBLE (QUOTE =ATO=) L E) is equivalent to saying
(xF (aTOM E) L (OR)).

2. X = (=ATO= A =cf) represents a 1ist with three elements:
uny atom, the atom A and any expresszon. For example:
(B A (N)) but not ((B) A (N)). .

2-6

[image: image28.png]2-6.1 TRANSITIVE PATTERNS 2-6.2

3. X = (=aT0= B (() ==)Yrepresents a list with three clements:
the first may Dbe any atom, the second may be atom B,

and the third must be a list of elements: the empty list
and any expression -~- atom or list --,

4., I£f X ={(ABC ==4) and L = (A VAR (G O Ag B VAR BB), then
X will match with ((G 0 A) BB ¢ D {G O A)

ond W with ggc oA} B3 C (E) (G 0A))
but not with {{(¢ 0 AYBB ¢ (E) (F) (¢ 0 A))
neither with (A B C ==

5. X = (=QU0= (A == C))will matoh with
E = (A C) but not with E = (A B C) mor with
E = (=Quo= {A == ¢))

In items 4. and 5., the result obtained by resemble when
similarity is discovered is the dictiomary L such as it was
originally.

A table of resulis is shown below.

TABLE OF EXAMPLES OF TERMINAL PATTERNS
in these examples, the dictiomary L is (B VAR TANGENT)

1

T
B | ¢ | (B € | TANGENT | (B ==} |TANGENT M) | 5 lzauo= €}

IS

i
K F [F ¥ T F
T T < T X T T
FiF ¥ F v ¥ 3 F
FLE 3 53 F- [F 3
[N 3 F v F [+ 3
G ¥ v v ¢ | 3
i Yt ¥ T b i T
FiF [¥ ¥ 7 v F
FlF F ¥ < v ¥ ¥

For cownvenience, we marked with T those cases where
similarity exists, while in reality the result is (B VAR TANGENT);
i.e., the dictionary L. For example, the first line [ﬁ of
=ATO=] would be read: Tue e

(RESEVDLE (WOTE ~ATO#) (PUCTE (B VAR TANRENT)) (FUOTE (31) = F
(PESEMBLE (NUNTE =ATO=) (OMOTE {B VAR TANGENT}} (FUOTE B))) = (B VAR TAMGENT) ¢
(RESETBLE (UOTE ~ATO-) (‘WOTE (3 VAR TANGENT)) (QUTE G))). = (B VAR TANGENT), stc.

2-6.2 TRANSITIVE PATTERNS

Atoms whose mode indicates the type of comparison
between the partner and expression E. They are used to rep-
resent in the source program more complex expressions and/or
to give us information regarding sub-expressions of expression E.

2-7

[image: image29.png]2-6.2 ATOMS REPRESENTING INDEFINITE EXPRESSIONS 2-6.2

‘To determine their similérity or disparity with
expression E, the partner must be examined, and for this
reason we can say that they are recursive patterns that
compare the partner and the expression under RESEMBLE.

ATOMS REPRESENTING INDEFINITE EXPRESSIONS

When the pattern in which they are contained matches,
they change to the VAR mode -- in the dictionary -~ and thus
provide useful information which will subsequently be used
by KEPLACE in the skeleton.

Y (oae YUAR X L0

Atom whose mode is UAR. If L = IEEE—FOUAR % oo, then Y
represcnts a blank, a space which may be filled
arbitrarily by any expression -~ atom or list —-- but
which must be filled systematically by the same ex-
pression in the sense that if various Y's appear in
the pattern X, the same expression must appear at the
corresponding points of E.

In UAR, the PARTNER is unimportant, since Y has
no initial associated value; nevertheless, it must
e present to conserve the period 3 of the dictionary.

We say that Y is a connectable variable, capable
of matching with any expression; oncc it is matched,
it becomes a connected variable changing L into

(.+« Y VAR EE ... 5, where the partner EE is the
expression with which it made connection,

EXAMPLE 1. X §N == NAS), L ={(NUAR *) will Bf comparel
with E = (P A P A.S), where the value of RESEMBLE is
(N VAR P), and with E = (ET) (0 R} (T) A 8), where
the value of RESEMBLE is (N VAR (T)), but not with
E= (T A B AS), where the value of RESEMBLE is F.

We can say that a connectable variable behaves like ==

B
except that it "remembers" the value with which it matched.

EXAMPLE 2. If L

(z var (}),
= (A B), it will match with
X = (== ==) [a 1list of elements]
but not with X = (Z Z) [a list of equal elements].

Note that (RESEMBLE X L E) does not imply (RESEMBLE E L X);
i.e. pattern and expression are not commutative; RESEMBLE only
recognizes special symbols in its first argument.

ATOMS REPRESENTING PATTERNS

They allow thak an atom represent an entire pattern,
lending simplicity to the argument X and providing recursive

2-8

[image: image30.png]26.2 T ATOMS REPRESENTING PATTERNS 2-6.2

definitions (see original, page 2-13, recursive patterns). For
example, instead of X = (M (== == ==) N (== == ==

L = (), we can write X = (M 3 N 3 3),

Atom whose mode is PAT. This atom causes its PARTNER to be
compared with E, in search of similarity. This partner
is, therefore, a pattern as general as desired.

Example: X = (A C), L = {A PAT (B == B) B UAR *%)
will match with E = ((x U N) C), J&Wﬁg ho.umrx
the value (A PAT (B == B) B VAR N), bu

not with E ={(N U M) C), ® having the value F,
por with E = (A C).

Atom whose mode is PAV. As in PAT, its partmer is a pattern
which is compared with E, but, like UAR, if there is
similarity, it assumes the value of the expression
compared and "remembers" it for future use, changing
into a comnmected variable (VAR mode)

Example: X = éo S 0), L = (0 PAV { == ==)),
E=((MI)Ss (M I)), then
(RESEMBLE X L E) = (o VAR (M I)).

Example 2: X = (B B), E =((M A) (M E)), will have

similarity under L = (B PAT (—_. ==)), vielding
(B PAT (== ==)) as the value of RESEMBLE, but
will not compare under L = (B PAV (== ——)),

yielding F as a value.

This means that PAV requires for the first time
similarity with its partner, and later equality with
the expression with which it was first matched.

PAV requires that the expression with which 1t
is matched be the same in all cases and that, further-
more, it match with the pattern it has as its PARTNER.

EXAMPLES
1. The definition in L of . as (. PAT ==) allows us to use
instead of ==, i.e.,
X = (A . . . B) is equivalent to (A == == == B), therefore,

it will match with ¢ = (A 1 2 3 B), and
E = (4 (a) (B) (Cc D) B), but not with B = (a4 (B) (C) E),
glv1ng F as a result.

2. (X PAV = is equivalent to (X UAR *);, a comnectable
variable. Nevertheless, X UAR * is more rapid. See
Chapter IIX.

For example, it will match with E = (AR AR), if X = (X X),
vielding the result (X VAR AR}).

Note: Exampfe 1 above will not be correctly realized by
CONVERT on a Q-32, since in LISP 1.5 the period. (.) has a

[image: image31.png]2-6.2 ATOMS REPRESENTING SUB-SETS

special meaning. This is thé reason why . was not used
instead of 3 furthermore, we prefer to use double
symbols, for example, ==, instead of simple symbols (=),
since thus we are able to analyze a text consisting of
characters.

TABLE OF EXAMPLES OF ATOMS REPRESENTING PATTERNS
X = (P EPA)

i T Lot paTie zal[La(Pav (= =21|LotP PATE= YIY UAR %
"Ex(1 2)E(3 @A) P PAT(= =2)) s € s F

| =40 20E@ 2)A) (P PAT(xa 1) ! - e PaTie ¥)¥ van 2)
;E=(\n 2E0 20A) {(p paTtzs) I(p VAR(L 2)) 1{P PAT(= Y)Y VAR 2}

llE’(IZElZA) F F F J

' 1=(P PAV{z2 Y)Y UAR %}

Ex{(l 2)E(3 4)A) F

i
;
i

Exll 2)2(3 2)A F

!

IE=W1 2)EC 2)A)P VARU 2)Y VAR 2)
r

jesti 2 E1 2 A) [
{ 4

ATOMS REPRESENTING SUB-SETS

These atoms match with lists, from which they extract
the elements similaxr with their partner; this is a pattern
which gives us the criterion to accept or reject an element
of the list as a member of the sub-set.

ngai atoms comsider the list with which they match
as ahﬂsmooyéénaﬁb»set; furthermore, we obtain F if we try

to compare it with an atom.

Atom whose mode is SUB. The first occurrence of this atom
extracts from the list with which it compares the

2-6.2

elements with similarity with partner; it "recalls™

this information and requires that the same elements

be obtained in later comparisons (regardless of order);

% RS W 2 is converted to VAR w&%h RENAENFR,

whenever this occurs [that the various comparisons
produce the same subset otherwise a false answer
results.

2-10

ik PaRwe? the ubset thos astained

[image: image32.png]PATTERNS COMPARING WITH FRAGMENTS 2-7

()

o A h
ATy

Tree represented by A or L.
With the same L, if X is simgiy-A, this patterh will
mateh with B8, ((4 ()) ((x (M () (v ()))) O)),
but not with (), ({A B) (¢ D)). This subjbet of
trees and recursive patterns will be dealt with in
greater detail in Reference 8-ke¢.

2-6.4 PATTERNS DEFINING PATTERNS

(=DEF= R P Q) means that Q must compare with E, but that
during the comparison R PAT P is added to L, so that
within the @ patiern R represents the pattern P.

If Q is omitted, P is used instead, while, if
several definitions are carried out, the last clement
is compared with E, which will have all the other inputs
connected as patterns inm L. R may remain in parenthe—
ses indicating that it is a fragment which is being
defined.

These definitions arec temporary in the sense that they
are only valid in Pr; nevertheless, they have priority, there
fore =DEF= may be used to re-define temporarily variables in
the dictionary.

=DEF= only defines NAMES in the PAT mode.

2-7 PATTERNS COMPARING WITH FRAGMENTS

These patterns, since they match fragments, cannot
exist independently, but must appear as elements of a list.

In the L dictiomary v&&e atoms represent expressions
or fragments according to %%&d; their names are alone or
contained in parentheses -- singlets —-. Tor example,

A VAR {1 2) represents list (7 2); (a) VAR (1 2) represents
the fragment 1 2, See NOTE 1 in the "VAR mode."(e 2-4¢)

It is customary to give the fragment a name consisting

2-14

[image: image33.png]2-6.3 RECURSIVE PATTERNS 2-6.3

Example. L= (A PAT (=OR= =ATO= (A A A))) defines A as a
ternary tree, in the sense that it is a list with
three atoms or ternary trees; see illustration.

A will match with E = (B A C)
with E = (B (1 2 ((KL M) RR)) (* % %))
with B = YYYYYYY
with E = (YYyyyYy (YY YY YY) POLITECNICO)
{polytechnic]
but not with E = (DOS TACOS) [two wads]
nor with E =

)
The 1list (B (1 2 ((K L M; R R)g (* * *)) used in this
example has the form shown in the figure.

Form of the list (B (1 2 ((K L M) RR)) (% % %))
used in one of the examples.

Example. The cycle K PAT (=OR= =ATO= (=ATO= K =ATO=)) defines
K as a tree like that of the figure below; with two
lateral branches and a trunk; see illustration, will
match with (A (B (C D E) G) N)

Tree represented by the pattern XK.

Example. The dictionary
L = (A PAT (=OR= =ATO= (A L)) L PAT (=0R= () (a L)))
defines A (and L) as binary trees in whose left-hand
branches we find suspended atoms and on whose right-
hand branches we have empty lists. Its shape is
shown in the figure. If X = (A L), and E = (4 ()),
F=(() {)), 6= (A B), then

(RESEMBLE X L E) = (A PAT (=OR= =ATO= (A L))
L PAT (=OR= () (A L))
ERESEMBLE X L Fg = F -~ false —-
RESEMBLE X L G) = F -~ false —- -

2-13

[image: image34.png]2-7.1 TERMINAL PATTERNS 2-7.1

of 3 equal letters: XXX, ZZZ, although, in weality, the
important thing is that the fragments appear in L as a
singlet and the expressions as simple atoms.

2-7.1 TERMINAL PATTERNS

Terminal patterns do not require later comparisons to
determine if the fragment with which they are compared has
similarity.

=== Compares with any portion of a list.
VAR mode An atom that appears in L as a singlet in the
form (XXX) VAR (A B C) represents the
fragment A B C, with which it will match
via EQUAL. Example< X (xxx T XxXx),
L (xxx) VAR (A (B) c)) will match with
E - A (B) ¢ T & (B) C).
NOTE 1, Just as list (A B C) may be repre-
sented by X VAR (A B C), "technically" it
can be conceived that the fragment A B C
can be represented in the dictiomary L as
XXX VAR A B C, however, due to the fact
that the latter representation would destroy
period 3 of the dictionary, we have agreed
to enclos? be;ween ?arent?eses the name and
o partner: (XXX) VAR (A B C
whﬂlwmwfu” thet imthe Intetrligeree; if XXX
then (XXX) =
As we see, the partmer of a fragment in
the VAR mode must be a list.

(*Quo* P) Means that P will be dealt with as a fragment of
X instead of an expression; comparing the
content of P by equality. *QUO¥, like VAR,
is used to quote ATOMS which otherwise would
have a different meaning, whether because
they are special or because they appear in L.
P must be a list.

Example. (*QUO* (XXX XXX))}, if

L = ({XXX) VAR (C z)), means XXX XXX, and
not C Z C Z.

QUO¥ is of little use.

EXAMPLES

[{See next page for first example.]

Example 2. The definition in
L = (... FIRST oAT (=OR= A (FIRST ===)) A PAV =ATO=).
FIRST exiracts the first atom from a list at any depth; the
result will appear as A VAR ABC
Lrirst atom found.

2-15

[image: image35.png]2-7.2 SUBSTITUTIONAL PATTERNS, ASSOCIATED FRAGMENT 2-7.2

ATOMS REPRESENTING INDEFINITE FRAGMENTS

TABLE OF EXAMPLES OF TERMINAL FRAGMENTS
L = ({YYY) VAR (G ==N)

ix EfB-6 R Mia 6 XNK OB YYKO ar!u(vvv K o)a)lA?:I
; F T e g T jr}:!
firex vy ooy D - ¢ ! L
Em»womvv «onst| 7 ¢ T 3 iel e
fesat T ™ ™ : e !;i 74
[f - , . i T~ H ¢

Note: T* = ((YYY) VAR (G

2-7:2 SUBSTITUTIONAL PATTERNS

Substitutional patterns are atoms that occur as
singlets in the L dictionary; their partner is a list; the
mode indicates the form in which these atoms are connected
with the content ~-- i.e. with a fragment ~- of that list,

ASSOCIATED FRAGMENT

The phrase "associated fragment" indicates "the content
of the partner," assumivg it to be a list; for example,
if L ((XXX) PAV (A M T)), the associated fragment with XXX
is T.

B b
=
=

ATOMS REPRESENTING INDEFINITE FRAGMENTS

These- atoms may be compared initially with any fragment;
if successful, they "stabilize," and their mode changes to
VAR,

They are used to extract information from FB: the final
length of the fragment of ¥ which compares with one of these
atoms is indefinite, being determined only by the matching or
similarity of the other parts of the pattern. At least this
similarity requires that the lengths of the compared fragments
be modified.

UAR mode. They appear in the dictionary as (XXX) UAR ().
Like =, they may match with any fragment,
but once one of them has been found, they
retain this value, and VAR changes; this
means that the appearance of various XXX

[image: image36.png]CNT mode.

ATOMS REPRESENTING INDEFINITE FRAGMENTS

Has

in a pattern signifies that there will be
several equal fragments in E located in
the corresponding places.

Tentatively, if we assign to a frag-
ment UAR a length zero (empty fragment),
and if this value fails, i.e., if this
selection does not cause the remainder of
X to match with the remainder of E, the
length increuses, and the comparison con-
tinues, etc., until a match is Tound. By
this procedure, the solution found is the
minimum solution (the shortest fragment).

If the partner is not an empty list,
but one that contains some elements,
for example, {(XXX) UAR {A B), then XXX
will match with a fragment whose initial
elements are those of the associated frag-
ment.

the form (XXX) CNT ATOM; like , it will
mateh with an arbitrary number of any
elements such that the remainder of the
pattern and of the expression match; if the
same atom occurs several times, it is re-
quired that the number of matched elements
be the same in each case, although in
general the elements will differ from one
case to the next.

The partner is an atom (formed by
digits), which indicates to us the minimum
length the fragment must have.

CNT "counts" the elements with which
it matched. After a match has been suc-
cessful, CNT changes to REP and then [to be
used by REPLACE] to EXPR.

NOTE: Actually, ‘the transformation
continues to (XXX) REC num instead of
(KXX) REP num; rec is a mode of intermnal
use. For all practical effects it is equal
to REP, the difference being that the REP
modes do not produce an output in REPLACE
(they do not retain the value of the com-
pared fragments) and the REC modes appear
as XXX EXPR ATOM, where (1) XXX is no longer
a singlet but an atom and (2) its partner
is an atom =~- formed by digits -- which
indicate the length of the fragment with
which it matched.

CNT is one of these rare cases where
a fragment has as a partner an atom and

2-17

2-7.2

[image: image37.png]FFER AT PN

which, when it is used, is employed as an
expression and not as a fragment.

TABLE OF EXAMPLES OF INDEFINITE FRAGMENTS

LEUXXX) UAR () {YYY) UAR () (Z2Z) UAR (A) {CGC) CNT 0)

2]
x €1 (AR [ajr) A M3 Boa [tarsou) (161 (0} (M1}
XXX SR RIXXN 2 (a) R [XXK = G.A M| XXX =8 O A|XXX = A RB O L]xxx = (6} {0} W)
(xxx) YYY =Tociol¥YY = vaclo |YYY 2 voclo | YYY = vacio |YVY = vecio YYY = vagfo
! K222) UARWIZZZ VAR (A1 Z72)UAR (A (ZZZ)UAR W) ZZZVVAR) kzZzumn fa)
| CCC) CNY OHCCG) CANT O HCCC) CNT Of(CCC) CNT 0{iCGC) CNT o 16CE) eNT O
XXK = Voc]'p;x“ = vocio XXX = wacio | XXX = voci XXX = vacio XXX = vocio
YYY = &R jvyy =y R YYY =GAM | YYY = Boa YYY = ARBOL YYY 2 {G) (0) ()
10X YN 222 Usk Witzzz) vaR @ (222) vAR m! 222 wAR W) [(2Z2) UAR (a) 227 VAR (A}
i (CCC) CNT 0CC) CNT 0 MCCa ChT 0 |(ccer oNT 0 liccel enr o 4CCQ) AT 0
XXX 2 vacig XXX =G XXX =8 0 XXX = vacio
vYyy = R YYY = YY = vecio YYY=RB O
(XXX A YY) 272y yar] F 2o AR W s uan 0 |22 van (- r
i iccel oNT o HCCG) CNT 0 jiccal CNT O [(CCC) ONT O
; XXX = vocio . XXX = vacfo
YYY = vacio YYY = vacio
22z} A0S £ F 4 Wy hEgo F
iccel eNT 0
XXX = vocto
22z & Yvv) £ " 3 £ yrv=ouL F
7ZZ= A R
(E6CQ cAT O
XXX = vo XXX = vagio |XXX = vacid | XXX = vacio vacio XXX = voeie
ccer YYY = vacidY¥Y¥ = vocie [¥YYY = vocio | YYY = vacio vocio YYY = yacio
(222} UAR L0277} VAR WM|(ZZ2) UAR (ANZZZ) UAR (8 [(227) UaR 40 222 uam fal
CCC VAR 2 JeCC VAR 2 [occ vam 3 Jcec VAR 3 |cce vam s €CC var 3
Legend -~ translated: (1“)\’1‘ree; (2) Empty.

The table is highly schemat ¢; for example, the
first square must be interpreted as follows:

(PESEMBLE (QUOTE 0X00(3) (QUOTE {000 VAR €1 (YYY) UAR () ¢Z2Z) uAP # (oo ONT 0
{QUOTE (A R})) = ((00X) VAR <A P) (YYY) UAR) {(ZZ2) uaR 9((CCC) CNT 0)
™,

Example 2. If XXX is an indefinite fragment,
X XXX B XXX), .
E=(0OBABOBBATSB 0), then the process of comparing X
with E is as follows:

1. X . XXX B XXX) B
: The arrow ¢ indicates the
E (O B AROBBABO) part that does not match.
2. X

X 8 x:xx H

E (0OBA 8 0BBABO)

[image: image38.png]FRAGMENTS REPRESENTING PATTERNS

S0 K (e K XXX
E (O BABO B BABO)
with the result ((XXX) VAR (B A B 0)). See Chapter IIT on

notation of ob-
sexvers.

FRAGMENTS REPRESENTING PATTERNS

Their partner is a list whose content is treated like
a [fragment] pattern. They match with a fragment of E which
has similarity with the fragment partner.

PAT mode.

REP mode.

PAV mode.

EXAMPLES

1. L= (...
X = (XXX
E=(PB

2. L = {(Yvxy
Then X =
2= (a (3
E = (A
((yYYy) RE

(XXX) PAT (== B
A XXX). Then X is equivalent or similar to

The associated fragment compares with the

corresponding fragment of E under the
rules of RESEMBLE; it may be said that, in
X, the atom whose mode is PAT is replaced
by the associated fragment, and this new
X is compared with E.

Its partner is a list whose CAR is a pattern

(an expression, not a fragment) which
repeats as many times as indicated by the
CADR of the partmer. Example. (XXX) REP (A 8)
is equivalent to the fragment

A A AAAAAA,

Furthermore, it is assumed that
(YYY) REP 5 means

Like PAT, its associated fragment must match -~

under resemble -- with the corresponding
fragment of E; if similarity is found, PAV
"recalls" the matched fragment, changing
to VAR, so that various ocecurrences of the
same atom will compare with the same frag-
ment. This information is then used by
REPLACE,

—==) L.l),

X = (== === A == B =
will compare with

=), and therefore

23AGB7S5).

REP ((===) 3)).
(A YYY B) will compare with

D) (3 (E)) B) but not with
(?) B), the result being

3
= 3)).

[image: image39.png]2-7.2 COMMENTARY, COMPOUND PATTERNS 2-7.3

3. L= g(xxx) PAV (== B ===))
X = (XXX A XXX) will compare with (P B 12 3 APB | 2 3)
but not with E = (P B i 2 3 AGB 7 5) [see example 1],
nor with (1 2 3 A 1 2 3),

. (...) PAT (===) is another way of saying

5. (XXX} PAV (===) is equivalent to (XXX) UAR (). Neverthe-
less, this cycle provides for greater speed -- see PAV
mode, original, page 3-39.

GENERAL COMMENTARY ON SUBSTITUTIONAL-FRAGMENT PATTERNS

RESEMBLE manipulates a pattern which contains fragment
patterns, substituting in the pattern its name for the content
of its partner, i.c. for its associate fragment, and then
making the comparison.

. For example, if L = §(xxx) PAT (A == YYY) (YYY) PAT (===))
X XXX B XXX)

then X is changed to EA YYY B A YYY), hence to
A === B A
and then compared. It can be said, therefore, that the

singlets represent fragments in the source program.,

This is generally acceptable; nevertheless, certain

precautions must be made. For example, if
L = ((XXX) PAT (=DEF= A B C))
X = (XXX D F)
then X is considered: (=DEF=.A B C D F)
wherefore A PAT B

C PAT D
is added to L, and F_is compared with E.

Another equally logical interpretation, but which
resemblep ddh't carry out, is that (XXxX) PAT (=DEF= A B C)
represents the content of expression C during whose evaluation
A is the pattern B; a content which is added to X as a value
or replacement of XXX. Resemble does not work this way,

2-7.3 COMPOUND PATTERNS

These patterns provide for boolean combinations of
fragment patterns.

Note thawt: I. -- Although their form is a list, they are
compared with fragments, for which reason
they cannot appear along as a pattern
except within a greater list which is
pattern X.

[image: image40.png]2-7.3 RECURSIVE FRAGMENTS 2-7.3

iI. -- Pj are expressions, not fragments,
whose content will be compared.

(#0R* P1 P2 ... Pn) Compares.with a fragment if this tragment
compares at least with one of the contents of
P1, P2, ...

(*NOT* P1) Represents a fragment which has no similarity
with the content of P.

{8AND3 P1 P2 ... Pn) This expression will compare with a
fragment if the same fragment compares simul-
taneously with content of {all) the Pji's.

{(*ANXD* P1 P2 ... Pn) X will be compared with E.
Content within X will be compared if there exist
in E fragments which match with the content of
P1, the content of P2, ... , so that the re-
mainder of X matches the rest of E.

The difference of AND, which is a

"strong" AND, the ¥AND¥ does not require that
the fragment against which it is compared be
the same for all the Py's.

EXAMPLES

1. X = (=== (#aAND* (4} (B)) ===), a list containing one A
and one B, compares with (T A B A N O §) [translation:
horseflies], but would not do so if it were LANDS;
nevertheless, X = (XXX (*AND* (A) (B)) ===), with
(XxX) UAR (), will not compare, since XXX fixes the
length of vhe fragment to the left of the (¥AND* ...).

2. (=DEF= (EVEN) ((*¥ORx() (== == EVEN)})))
note the ((

defines a fragment of even length; in this form recursive
patterns may be defined which represent or match with
fragments; the same result would be obtained if we add

the cycle (EVEN) PAT ((*OR* () (== == EVEN))) to the
dictionary L.
3. The statement (EVEN) PAV ((*0R* () (== == EVEN)})) in L

will also define a fragment of even length, and will
retain the value of the final fragment (called the major),
since it is a recursive pattern.

[image: image41.png]2-7.4 RECURSIVE PART OF RESEMBLE 2-7.4

TABLE OF EXAMPLES FOR THE EVEN PATTERN FRAGMENT
X = (EVEN R EVEN)

ejempla 21 {#jompicd)
E EVENd.ﬂ»idocomoOPAT EVEN dotinido coma %
wroruw ofD F F
ITAESRTR Ee)s LEVEN) PAT ((36---o- NY(EVER) VAR (T & gds)
&
(TRE SRsE l(js {EVEN) PAT ((-----}} F
Legend -- translated: (1) (example 2) EVEN defined

as PAT: (2} (example 3) EVEN defined as PAV; (3) (ONE R O N E);
(4) ETHREERTHREE); (5) (THREERS I X);
(6) (THRE E).

RECURSIVE PART OF RESEMBLE

More complex expressions are compared requiring that
the (CAR X) present similarity with (CAR E), and at the
same time (CDR X) present similarity with (CDR E). Neverthe-
less, bear in mind the comment regarding substitutional
fragment patterns, original, page 2-19.

Next we will present two tables, one of mnemonics for
the modes used in RESEMBLE, and another of the approximate
values of RESEMBLE and REPLACE. On page 2-22 of the original
we find a table containing all the existing patterns. PFur-
thermore, on pages 3-47A and 3-47B of the original we find
the details of the interconversion of the modes in RESEMBLE;
Page 3-90 of the original gives the definition of EDIT
which converts the dictionary headed by REPLACE whenever
there exists similarity to the D used by REPLACE. See also,
in this regard, section 2-8, page 2-23 of the original.

APPROXIMATE VALUES

Value at first

FUNCTIONS approximation
(RPSEMBLE X L E) (BEQUAL X E)
(REPLACE D s) s

special symbols are recognized

[image: image42.png]2-7.4% 2-7.4

I MODES IN RESEMBLE———l

; TABLE OF MNEMONICS
I uAR indefinite variable
1 VAR definite variable
? PAT pattern
: PAV pattern and variable
; REP repeat !
E CNT count !
i suB sub-set
i MSU minimum sub-~set
i STL strictly less
. 1 STG strictly greater
SEQ internal use
! MSS internal use
i WAR internal use
i REC internal use

TABLE OF PATTERNS IN RESEMBLE

PATTERNS COMPARING PATTERNS COMPARING
WITH EXPRESSIONS WITH FRAGMENTS

Terminal Patterns

=ATO= VAR mode -~ singlet -~
=NUM= (*Quo* P1)

Atoms not in L

(9]

(=QU0= Ps)

(=DEC= A+)

=0RD=

STL mode

STG mode

VAR mode

[image: image43.png]2-7.4 TUSE OF RESEMBLE AND REPLACE IN CONVERT 2-8

TABLE OF PATTERNS IN RESEMBLE (cont.)

PATTERNS COMPARING PATTERNS COMPARING
WITH EXPRESSIONS WITH FRAGMENTS

Substitutional Patterns

UAP mode represent blanks {UAR mode CNT mode
PAT mode represent patterns {PAT mode PAV mode
PAV mnode REP mode

SUB mode)
e 3 represent sub-sets

MSU mode |

Compound Patterns
(=OR= P1 P2 ...) (*OrR* P1 P2
{=AND= P1 P2 ...) (*AND* P1 Ps
(=NOT= P1) (*NOT* P1)

(AND P1 P2 ...)
Patterns Defining Patterns

(=DEF= N1 P1 N2 P2 ... P')

2-8 USE OF RESEMBULEAND RE P L A C E IX CONVERT

Each one of the rules forming the sets of the argument
R of CONVERT is compared by way of RESEMBLE with cxpression

E -~ the third argument of the CONVERT function -- in seawrch
of similaxrity; during this comparison, RESEMBLY uses as a
dictionary L a mixture -- prepared by ITLZI, orZ .

page 3-5 ~- of M and I, where the latter is wmodified by

adding vo its elements the UAR mode and the partner ().

The similarity of the pattern and the expression cause
RESEMBLE to yield as a value a dictiomary [L*] enriched with
information originating from the comparison. This dictionary
is changed into another D, renaming the modes in L* to others
suitable for REPLACE; with this new dictionary, we substitute
in the second part the skeleton of the xrule which matched,
to form the value of CONVERT.

In general, the VAR modes ~-- those which originally
were declared VAR by the programer and thosce which were
converted to VAR, for example, UAR ~- are convertced to the

EXIPR mode to be uscd by REPLACE. The function which makes

this change is EDIT, described on page 3-9@ of the original.

2-24

[image: image44.png]e EXAMPLE

1
1
ox

MNPLE

The numbers refer to the schematic of the following
page. Le¢t us assume that we want to “"rotate™ a list about
its first Aj; i.e., (C A BALL) (horse] will be converted
into (BALLOAC); (G ORDA) [fat] into (A G 0 R D),
and in general { --- A ...)= (vei A ===).

It is precisely this rule which we use () in our
program, where we declared () to XXX and YYY as indefinite
fraginents.

The variables D (@ , I and ¥ (3) of ¥ are not used
in the program, their presence being merely illustrative.

The transformation is carried out as follows:

7. ITLZY convertis to I and to M in the dictionary
T({YYY) VAR () (XXX) UAR () D UAR () W PAT (== ==) H SK=L HH)

2. This dictionary is used by RESEMBLE, which, in order to
compare it with E = (H O R A D A D 0) [given hour?,
uses the pattern (XXX A YYY), of the first rule of the
set. C1.

Assuming that there is similarity between (xxx A YYY)
and (H O RADAD O), RESEMBLE yields as the value of the
list
((xvY) varR (D A D 0) (XXX) VAR (I O R) D UAR () WV PAT (== ==

1 SKEL HH)
of W?}ch EDIT removes the "garbage collection" and transforms
To W

((YYY) EXPR {D A D 0) (XXX) EXPR (H 0 R) II SKUL)
This list is used by REPLACE to malke the substitution in
(YYY A XXX), the skeleton of the rule which was successful,
obtaining (D A D 0 A H O R) as a skeleton already "fillead"
and consequently as the final value of CONVERT.

(=SAME=), the rule two of the single set of R, says:
"if unything else is seen in E it returns it as a value, "
however, this is unnecessary, because CONVE alter exhausting
ali the rules of Ci without Tinding similarity, would
return as a value the expression E without change. In fact,
therefore, only the rules indicating change are worth men-
Tioning.

[image: image45.png]CON\"IERT (W PAT (== ==) H SKEL HH){YYY) (XXX} D}

P

M O] 1 ® (HORADADO)
E R

(ci(
@ [oxx & yyyy vy a xxx)]

[== =same-]
n

L%

RESEMBLE X L € = (IYYY) VAR (D & D O) (XXX) VAR (H 0 R} D UAR () H SKEL HH W PAT (== 5=))

o

@) LYYY) EXPR (D A D 0} LXXX) EXPR (H O R))

§
REPLACE D 5S=(DADO A H-0R}
S e
valor final de CONVERT

final valve of CONVERT)

-0

[image: image46.png]2-9 REPLACE, SKELETONS PRODUCING EXPRESSIONS 2-10.1

2-9 (REPLACE D S)

(REPLACE D S) is a substitution function which modi-
fies its second argument, S, according to the information
provided by dictionary D.

In general, the value of REPLACE is S, with the same
atoms, except those that appear in the dictionary, which are
replaced by their partner, and by some special ones recog-
nized by REPLACE.

If an atom is found which is the name of a fragment,
the associate fragment is inserted in $ in a similar manner.

Consequently, if we have
D = (X EXPR 1 ¥ EXPR 2 (XXX) EXPR (A B C)), S = (X XXX Y R),
we would have (REPLACE D S) = (1 A B C 2 R) and with
sS={AXIOMAXXYREGLA), the result would become
(A1 TOMAABC2REGTLA).

Nevertheless, it may happen that it is not convenient
to describe a transformation in a single step, and that we
would want to use different parts of an expression, or perhaps
to build an expression, to analyze it and to form another
whose form would be much more difficult to describe or
predict directly.

For this reason, the skeleton may contain code ex-
pressions indicating how these variations are to be made
in the construction.

2-10 SKELETONS PRODUCING EXPRESSIONS

These skcletons are the ones which, upon being
properly substituted, give an expression as a value. These
skeletons may occupy the place of S in (REPLACE D S); in
contrast with skeleton [lragments, they need not go into a
greater skeleton.

2-10.1 TERMINAL SKELETONS

These change expressions without using REPLACE recursively.

=SAME= By means of this symbol, we are able to refer
to the expression being transformed without
the need to assign to it a name as a variable.

Atoms that do not appear in L. They are substituted by
themselves; this means they. are not substituted.
They represent themselves.

2-27

[image: image47.png]2-10.1 SUBSTITUTIONAL SKELETONS 2-10.2

Atows under the EXPR mode. An atom with EXPR mode is sub-
stituted by its partner.

() The empty list is 'substituted by () -- another
empty list --.

{(=GLoT= 51) Tts value is S1, as it stands. No later sub-
stitutions within S1 are made.

Skeletons producing Symbols.

=LPAR= whose value is the character (
=RPAR= whose value is the character)
whose value is the character blank -- blank
space --
=GXNSY= whose value whenever consulted is a new atom

(on the 709 it is an atom numeral)

(=INTG= C1 €2 ...) whose value is the atom obtained when
Joining the chain of hollerith charactexs
ci1, €2, ... replaced .

(53
=DISI= whose value whenever consulted ¥ the next
sequential hollerith character taken from
the array element to which it has been pre-
viously fixed (or initialized) [with *DIST*].

=DISO0= whose value, whenever consulted, is the next
and sequential octal digit taken from the
array element previously initialized -- with
#DOST*, Sectiomn 2-14 -- .,

EXAMPLES

D = (A EXPR (B 0 N) B EXPR BB),)
s=(ARrRBO () (L (B (s5))) (=QUOT= A)/ then
(REPLACE D S) = ((BOoXN)RBB O () (L (E (S))) &) Note

that the value is not ({(BB 0 N) R 3B 0 () (L (® (5))) (B ON));
i.e. there are no later substitutions in the partner of an
atom-LXPR, nor within =QUOT=.

2. The substitution of D = (R EXPR I T EXPR L)
CART 5) yields as a result the atom CAILS.

2-10.2 SUBSTITUTIONAL SKELETONS

The final value substitutional skeletons acquire upon
being replaced requires the recursive use of REPLACE.

Atom in the SKEL mode. An atom with the SKEL mode in L

represents a skeleton: its partner. Consequently,

2-28

[image: image48.png]2-10.2

SKELETONS DEFINING SKELETONS 2-10.3

the replacement will be carried on its partner,

as if it had been written instead of the atom

in the S skeleton.

Bxample: D =§A SKEL (B B) B SKEL N M EXPR (A N A))
S={AMA BAN

will yield ((N NX) (A N A} (N N) N (N N) N);

meanwhile, if in D A would have the EXPR mode,

the result would be

({8 B) (A ¥ A) (BB)N(BB)N).

No We must avoid confusion between an ex-

pression [i.e. an S expression: an atom or a

list]} and an atom with the EXPR mode as well

as between a skeleton (an expression to be

"filled" or substituted by REPLACE) and an

atom under the SKEL mode.

2-1Q.3 SKELETONS DEFINING SKELETONS

They provide temporary skeleton definitions; in con-
trast with atoms appearing im D, representing valid defini-
tions at a distance from the entire S skeleton, the defini-
with these modes are valid locally.

tions made

(=QuoT= N1

(=EXPR= N1

.(:SKEL: N1

S1

51

S1

N2 $2 ... Nm Sm $') Substituted in skeleton S',
but with the new definitions N; EXPR 5; added
to the dictionary D.

N2 S2 ... Nm Sm S') Substituted in skeleton s,
but with the new definitions N; EXPR Sj
added to the dictionary D. * treplaced
We use the present dictionary D to sub-
stitute in the Si; we match the resultant ex-
pressions with the corresponding Ni and the
EXPR mode to increase our dictionary D, which
is the one we use to substitute in S'.

N2 S2 ... ¥m Sm S') Substituted in skeleton S',
but with the new definitions Nj SKBEL $; added

to the dictionary D. These definitions are
valid only during the cvaluation of $', but

have precedence over those of dictiomary D, if
by chance any of the names Nj becomes repetitive.
We can thus change locally the meaning of the
names.

The names may be'atoms or singlets; in the latter case, we
will be defining skeleton fragments.

gt

occur on Sm.
case, S' may be another (=EXPR= ...).

may be omitted; in this case, the replacement will

Note that S' may be any skeleton; as a particular

[image: image49.png]2-10.3 ARTTHMETIC OPERATIONS 2-10.4

A summary of what has been explained above appears in
the following table.

CASE INSTANT WHEN SKELETONS S1, DICTIONARY USED FOR
52, ... ARE REPLACED REPLACEMENT

=QU0T= never none

=EXPR= at the moment of replacing the one in lorce
the skeleton (=EXPR= ...) upon replacing the

skeleton (=EXPR=...)

=SKEL= at the moment of using Nj the new:; the one en-
since they pass into the riched with the
dictionary as SKEL temporary definitions

EXAMPLES

D = gH EXPR §1 2 3)), $ = (M H (=EXPR= H (A H)) H)
results: ((1 2 3) (1 2 3) (A (1 2 3)) (12 3))
if instead of =EXPR= it were =QUOT=, the result would be

((1 23 2 3) (& Hg §1 2 3)) W Gz 3))

and if were =SKEL=, ({1 2 3) (1 2 3) {(a (A (&

infinite 1list

the result would have as its third element an infinite list,
since H has been defined as the skeleton (A H).
"PUSH DOWN LIST EXIAUSTED".

J SKEL (A B C))
s J (=SKEL= A BB C (B A J 0)) J)
results: {({(A B C) (Cc ¢ (A B €)0) (A B C))
if instead of =SKEFL= it were =LEXPR=, the result would be
((arc)y (cB(ABC)O) (ABC)).

Example 2., D

non

2-10.4 ARITHMETIC OPERATIONS

REPLACE has a set of skeletons which produce arithmetic
operations and take the value of the result; they are of the
form (=PLUS= S7 Sz ... Sn). Their value is always a numeral.
In all of them, we first replace the Sj's, and then the
operation is performed. In general, the S; (already replaced)
must be numerals; on the 709, this is satisfied if the S;'s
are atoms in their last value to which has been applied a
=DECM=; in Q-32 LISP, they must be atoms beginning with a
digit, ., +, -. The numbers take the base 10.

On the 709, the operationé are on whole numbers,

mod 235; in Q-32 there are whole numbers and floating point,
depending on the form of the S;'s.

2-30

[image: image50.png]ARITHMETIC OPERATIONS 2-10.4

It must be recalled that, in MB LISP, a numeral lacks
written representation; it is "unprintable,” wherefore, in
order to sec its value (i.e., if the final value of a compu-
tation contains numerals) it is necessary to convert them
To ordinary atoms by means of the =UDEC= skeleton.

On the Q-32, in turn, the atoms which have the form
of numbers (see Reference 8-3b, page 87) are converted by
the input rou ¢, wherefore it is not necessary to make a
=DECM= and a =UDEC= on them; they are recognized by the
printing routine and converted to their corresponding written
representation; therefore, in Q-32 CONVERT, a numeral is an
atom number, for example, 8.0, -32, etc., and the atom coxr-
vesponding to a numeral or the numeral corresponding to an
atom coincide if the atom in question has a numeric format
(formed by figures, signs, etc). The following table shows
a summary of what has been discussed.

! !

. CASE 709 Q-32

| ATOM ordinary (=DECM= ATOM) = =DECM= and =UDEC=

I NUMERAL ! = NUMERAL are treated in the

i - Q-32 as noff-operation;
NUMERAL ordi~ (=UDEC= numeral) = their value is the

! nary ATOM = ATOM argument without

i change .

In Q-32 there .is coincidence between S, (=DECM= s)
and (=UDEC= S); this distinction is necessary on the 709.

(=DECM= A) where A is an atom. The value is the numeral
corresponding to A. In general, A has the form
of an atom formed by digits (whole). In -Q-32,
real numbers are also permissible. Example:
D = (BORR EXPR 45); S = (=DECM= BORR).

Result: b5 0009

{=UDEC= X) where N replaced is a numeral. The value. of
this skeleton is the atom corresponding to N.
Example: D = (BORR EXPR 23),
S = (=UDEC= (=DECM= BORR)}; Result: 45(atom)

(=PLUS= X1 X2 ...) The sum of all the replaced arguments
is formed. After the replacement, it is asswned
that all the argumeuts are numerical. On the.
709, the sum is calculated mod 215. In Q-32,
the sum is whole or real, depending on the
form of the addends. Its value is a numeral.

(=MINS= X Y) The difference X-Y is calculated, after first
replacing X and Y. -Its value is a numeral. On
the 709, the difference is always calculated
in absolute wvalues. -

2-31

[image: image51.png]2-70.4 OPERATTIONS ON SETS 2-10.5

(=TIMS= X1 X2 ...) The product of the replaced values of
the arguments Xi, X2, ... is formed. The over-
ilow is neglected. The result is a numeral.

(=powu= Y X) We calculate X raised to the power of Y; after
first replacing X and Y. Its value is a numeral.

(=DIVD= X Y) The quotient X/Y is formed. First X, Y are
replaced. The result is a numeral.

(=REMN= X Y) The residual of the quotient X/Y is formed.
First X and Y are replaced. The result is a
numeral.

Tiiere are also predicates in RESEMBLE which ask for
the prescence of a numeral, its sign, asking for O, etc.
For example, the pattern =NUM= is used to match with a
numeral, ln the same way as) compares with a list, or
== ¢ompares with any expression, or =ATO= matches with an
atom, or O matches with the atom O, or (=DEC= 0) matches
witn the numeral 0, etc.

We also bave =ORD= (page 2~6 of the original), which
will compure with a set whose members -- assumed to be
numerals -- are in an increasing order, and the modes STL
(strictly less) and STG (strictly greater), which compare to
the expression E with the partner, both supposed to be
numerals,

2-10.5 OPERATIONS ON SETS

Although not logically necessary, since they can be
synthesized with the aid of the appropriate CONVERT program,
it is convenient to have available the functions common in
the theory of sets. They are, together with their definition,
the following. In each case their axrguments are replaced
before the execution. They all yield lists as their value,

(=COMP= A B) rForms a list of the elemonts of A not belonging
to B.

(=INXTS= A1 &2 ... An) A list of all those elements common
to Al, A2, ... is formed. If an element is
found repeated k times at the intersection,
this means that it occurred k times, but no
more in each one of the sets Al, A2, ...

...) Forms a list of different elements that

appear in the sets A1, A2, ... In particular,

(=UNON= A) will contain the same elements as A,
but each element will appear only once, regard-
less of its multiplicity in A.

[image: image52.png]2-10.5 RANDOM SKELETON 2-10.6

{=CONC= A1 A2 ...) A list of all the elements which appear
in the sets Al, A2, ... is formed. =CONC= is an
APPEND multiple; in other words, the sets are
joined simply in the ordexr in which they are
listed, so that the elements can be repcated
an arbitrary number of times according to
their appearance in one or more of the sets
A1, A2, ...

(=CART= A1 A2 ...)} The Cartesian product of the arguments
Al, A2, ... is formed so that the result is a
list of x items, where the first element belongs
to A1, the second to A2, etc.

2-10.6 RANDOM SKELETON

. There has been a certain number of reguests to introduce
a random variable in LISP. For purposes of program testing,
error tracing, etc. it is prefcrable to use a pseudo-random
variable, and a convenient way of achieving this is the
process of raising to the square a large number, causing the
selection to depend on one of the central bits, and to store
the central bits of the square and then repeat the process.
In the absence of something more sophisticated, we have im-
plemented this technique in the function (RANDOM) of MBLISP,
which produces the values T or F according to the above.
Consequently, it is a predicate and, when used as an argument
of an IF, it will produce a "random" selection among the two
final arguments of IF. It may be initialized by the predicate
operator (RANSET), which is always T if it is desired to re-
peat the same sequence of [its] wvalues.

With the aid of this function, we can also have a
binary random selection in CONVERT.

(=RAND= A B) A pseudo-random selection is made of its two
arguments A and B, replacing them the one
chosen.

This random skeleton may be used to generate examples
of patterns which depend on an =OR= or an *OR¥. For example,
a binary tree satisfies the patterm {=DEF= B (=OR= =ATO= (B B))).
To obtain an example of a binary tree, the skeleton
(=SKEL= B (=RAND = * (B B })) may be used. At any instant,
the same probability of writing the atom * or constructing
a pair of elements which obey the same construction rule
exists.

If we desire a random selection other than purely
binary, various binary selections may be superimposed so
that the distribution of the frequency desired is obtained or
an approximation of it for its present values.

2-33

[image: image53.png]2-10.7 INPUT AND OUTPUT SKELETONS; RECURSIVE 2-10.8

Hence, if we write (=RANDE (=RAND= A B) (=RAND= C D)),
we expect to obtain the variables A, B, C, D, each with a
probability oi 1/4.

-7 INPUT AND OUTPUT SKELETONS

(=PRNT= S1) If we write (=PRNT= $1) we obtain the substi-
tute skeleton, but also its value is printed
on the output tape, It is useful if we want
to obtain any type of intermediate results.

2-10.8 RECURSIVE SKELETONS

This set of skeletons deals with the possibility of
constructing an intermediate result which, however, is trans-
formed by anoiher set of conversion rules.

(=BECN= Si) Having replaced skeleton S1 to form a new
expression, the entire conversion applies to
it. This means that we return to the first
set of rules of argument R of CONVERT, and
we begin to apply its rules to the superseded
$1. All the variables return to their original
state of definition or mon-definition.

Having evaluated $1 by means of REPLACE, the
present set of rules -- in use ~- is applied
to this new expression. All the wvariables
return to their initial state. Nevertheless,
the definitions introduced by =QUTg=, =EXPR=
or =SKEL= are retained.

(=coxT= S1) Having replaced S to form a new expression,
the set presently in use is applied to it,
however, the variables presently defined are
preserved. This means that in the rules of S1,
in patterns and skeletons, the values of
variables found by RESEMBLE remain valic: it
means that the definitions of dictiomary D of
REPLACE continue valid; we do not return to
the variables in their original state given
by M and T ~- first and second arguments of
CONVERT --, as we do with =BEGN= and =REPT=.

(=REPT= $1 K) K is the number of a set of rules used instead
ol' the present set; otherwise its behavior is
the same as without its argument K.

(=COXT= $1 K) By the same token,’the set K is used instead
of’ the set presently in use.

2-14

[image: image54.png]I8

-10.8 ITBERATIVE SKELETONS 2-10.9

(=REPT= S1 K1 R1 X2 R2 ... Kn Rn) 1In this case, the dic-
tionary (K1 R? K2 R2 ...) is APPENDed (added)
to the dictionary of sets of rules, and the
conversion continues with the set K1, i.e. RI.

(=CONT= S1 XK1 R1 K2 R2 ... Kn Rn) is the same version for
=CONT=. .

Note that in all cases the skeleton S1 is always
substituted by the present dictionary (dictionary D), and
to the resulting value (*) we apply the corresponding set
of rules, preserving dictionary D or returning to the
original dictionary, depending on whethexr =CONT= ox =REPT=-
=BEGN= is involved.

() The value of a skeleton is the expression (or
fragment) which results from replacing this skeleton in
accordance with dictionary D in the rules of REPLACE.

A summary .of the above is found in the table below.

TABLE OF RECURSIVE SKELETONS, DESCRIBING THEIR PROPERTIES

SKELETON SET TO BE DICTIONARY AFFECTED AFFECTED[

USED TO BE USED BY =EXPR= BY
¥SKEL =ITER=
etc.

A
(=BEGN= 'ZB3) ‘ first set of

P NO
j dietionary R | ypi65a3 N0
ESY
! (=REPT= &%) | the set pres-
| Y
ently being .
1 55 used or the YES
=CONT= | one whose
} (W) ! name it in- present YES
L ivokes]
Note: The forms shown with * instead of = obey the same rules.

The last column corresponds to the comment on page 6-4 of the
original.

2-10.9 ITERATIVE SKELETONS

They allow us to substitute a skeleton expression E
several times, and where E contains variables whose range
and domain are specific sets.

2-35

[image: image55.png]N

-10.9 ITERATIVE SKELETONS 2-10.9

i Ke\dtons
(=ITER= V1 S1 V2 S2 ... E) S1, 52, ... are *¥gge whose value
is a set (a list), let
gAl, A2, A3, ... g be the value of S1
B1, B2, B3, ... be the value of S2, etc.
Vi, V2, ... are skeletons whose value is an atom,
such as R1, R2, ...
€ & is a skeleton (not a fragment) to be substituted
which contains [in general) the atoms R1, R2, ...
The value of (=ITER= ...) is a list of all the
elements resulting {rom the substitution in E,
R1 by A1, AZ, A3, ...
®2 by B1, B2, B3, ...

without omitting nor repeating any.

The order (from left to right) in which they appear
in this list is obtained by varying more rapidly the most
internal variable (closest to the expression E), while the
mosi external°®variables undergo slower changes.

Each variable varies about (takes values of) its set
to the right.

Assuming that E is any skeleton, othexr symbols that -
form it and which are not R1, R2, ... will be replaced ac-
cording to the normal rules of REPLACE, using dictionary D;
for example, (=QUOT= R1) will not be replaced.

=TTER= carries out an evaluation (i.e. a replacement)
of @all the expressions to its right; therefore, it is in-
correct to assumé that every occurrence of Vi in E will be
replaced by members of $1; what really occurs is that every
occurrence in E of the atom [R1] which results from the
evaluation of V1 will be replaced by elements ol the set
which will doubtlessly result upon replacing S1.

In fact, =ITER= temporarily adds to dictionary D the
cycles Ri EXPR Aj, Rz EXPR Bi, etc., hence these definitions
have precedence in the case of R1, R2, etc. existing in
the dictionary.

EXAMPLES

D= sA EXPR J S EXPR (B A 4 C B D))

S= A (12 3) K (=INTS= s (G & B)) (J * X * A))

resulz: { (1 * 4 * (12 3)) é1 * B * §1 2 3); (2 % A % 51 2 33)
(2+B=*(123)) 3xa=(123)) (3*8x(23)))

NYote that iv is not A which assumes the values 1, 2, 3, but J;
J is the value of A,

2-36

[image: image56.png]2-30.10 SKELETONS PRODUGCING FRAGMENTS

"

-11

Interactions on Whole Numbers.

If the values of the Sji's are numerals -- instead of
s --, this numeral will be taken as the upper mark of
, the range of the corresponding Ry, causing Ry = 1, 2, 3, -.. S5i
(inciusive) to vary. This means that S$; is a numeral which
tells us how many times the iteratiom is carried out. The
values assumed by Rj are numerals.

gxample: D = (R SKEL (=DECM= 3) 0 SKEL J PRO SKEL (=TIMS J K))
§ = (=ITER= O (=DECM= 2) K R ((=UDEC= K) BY (=UDEC= J} IS
(=UDEC= PRO)))
result: (51 BY 1 IS 13 éz BY 1 IS 2) Ej BY 1 IS 3)
1 BY 2 IS 2 2 BY 2 Is 4) (3 BY 2 IS 6))
Note that the most internal variable varies very rapidly;
K in this case.

. Although the previous example would also run in
Q-32 CONVERT, there we could simplify
D = (R SKEL 3 O SKEL J PRO SKEL (=TIMS= J X))
5 = (=ITER= 0 2 X R (R BY J IS PRO)) presumably with the
same result.

Linear variations of another type are obtained easily
by a skeleton.

Example 1
D = (L SKBL (=UDEC= (=PLUS= (=DECM= 105 (=TIMES=
(=DECM= 3) J))))
S = (=ITER= J (=DECM= 4) L)
result: (108 111 114 117)

Example 2. [Only for Q-32]
D = (L SKEL (=TIMS= J J))
S = (=ITER= J S L); result = (1 4 9 16 25)

2-10.10 OPERATORS OF DATA MOVEMENT
Used to manipulate array elements.

(=STOR= C)
{=PACK= 0)

Described in Section 2-14, "Operators in CONVERT."

2-11 SKELETONS PRODUCING FRAGMENTS °

The value of these skeletons is a fragment, wherefore
they must appear as elements of a list, a more general pattern,

Replace, as we have seen, has atoms with a special

Y

[image: image57.png]2-77 TERMINAL SKELETONS 2-11.1

snificance, such as =CONC= or =ITER=. When these appear in
a okeleton of the form (=NAME= . . .)-and where =NAM i
of these symbols, this means that the previous list Lthe
lous skelcton] will produce as a value an expression,

if the skeleton is of the form (*NAME¥ . . .), then
us list is a fragment skeleton, and will produce
as a value a I'ragment, the content of thé cxpression that
would be produced by =NAME=.

(I}

For examplec, é:UNON: §A Bc) (p E_A;g (A BCDE)
and (¥UNON* (A B C) (D E A ABCDE
Consequently, to learn the fragment skeletons, it is suffi-
icnt to remember the expression skeletons and to exchange

In general, the following identity is realized
((*NAME*)) = (=NAME=)

2-11.1 TERMINAL SKELETONS

Substituted by a fragment without using REPLACE
recursively.

SAME# Its value is the contenl of expression E which
matched the pattern of the rule of which *SAME*
is a part.

I must be list; otherwise an error message will
result.

(*QUOT* 51) Its value is the content, without replacement,
of’ S1, which must be a list.

SKELETONS PRODUCING SYMBOLS

(*#DESN* A) whose value is the fragment consisting of the chain
of nollerith charactvers which form the namc (tho
OAan ndme) of the avom A, alter being replaced.

, after being replaced, must not be a numeral or

le: S= (A (*DESN* ELECTR) (*QUOT+* (O N I C)) A)
ili be converted into (AELECTRONTICA
A electronics].

N o R

EXPR mode (frugments). If an atom f{igures as a singlet in
the dictionary D, under the EXPR mode, it is
then substituted by its associate [ragment without
Leing followea by a later replacemeni in it.
Example. (3%x) LXDR (A R G) G SKEL GGGG)

SASE(S) s~ (ARGAARGE (ARG)I)

The partnor of an EXPR mode is considered as quoted
material; no special symbols are recognized there.

2-38

[image: image58.png]SUBSTITUTIONAL SKELETONS 2-11.2

Z-11.2 SUBSTITUTIONAL SKELETONS

These are atoms found with singlets in the dictionary D
under the

SKEL mode. The atom is replaced in the skeleton by its associate
fragment to form a new skeleton, which is replaced
by REPLACE. In the majoxrity of cases, the value of
an atom such as SKEL is the value of its corresponding
assoclate fragment; this means, the result of sub-
stituting D in the associate fragment. There are
"rare" cases where CAR affects CDR. See examples,

In EXPR as well as in SKEL, the partners

must be lists.

EXAMPLES

1 ((xxx) 2xPR (A R C) (YYY) SKEL (B XXX 0))

(¥YYY YYY) has as a value (DA RC OB AR C c).
[shipship]

wy”
)

H

2. D= ({XxXX) SKEL (A B C) A EXPR AA)
S ="(B XXX A C) will convert into (B AA B C AA C)
3. D = (R EXPR J (XXX) BXPR (=ITER= R (B A C)))
S = (XXX (R J)}) has the value of (=ITER= R (B A C) (J J))

however, if we had defined XXX as SKEL, the result would be
((s B) (7 A) (J C), since a fragment in the SKEL mode
must first be added to the skeleton $ and then the
substitution must be made; this means that it sub-
stitutes for the intermediate skeleton

S = (=ITER= R (B A C) (R J))

Conclusion: as in RESEMBLE, in REPLACE the fragments are
also fragments of the source skeleton; this means they
are Lirst substituted to form a new object skeleton,

4a. D = ((XXX) EXPR (=EXPR=) A EXPR AA B EXPR BB)
S = (XXX A B (B ARCA)) converts into
XPR= AA BB (BB AA R C AA)), i.e. the value of
XXX is IPR=

4b. With D = ((XXX) SKEL (=EXPR=)A EXPR AA B EXPR BB), the
result would be (BB BB R C BD), since it will substitute
in the skeleton
(=EXPR= A B (B A R C A))
i.e., D defines XXX as an equivalent of the symbol =EXPR=

th D = (XXX SKEL =EXPR= A EXPR AAB EXPR BB)

the result would be (=EXPR= AA BB (BB AA R C AA))

since XXX is defined as the expression skeleton =EXPR=
{(not a Tragment skeleton), &and since this does not affect
the CDR of the S.

/

be.

erl
2

[image: image59.png]2-11.3 DEFINING SKELETONS, CONVERTING EXPRESSIONS INTO 2-1
FRAGMENTS, OPERATING ON SETS

hd. NWith D = } SKBL (=EXPR=) A EXPR AA B EXPR BB),
we obtain the same result as in 4c.

fonclusion: when it is desired that part of the list alfect
the remainder to its right, one must define it as a fragment
in the SKEL mode.

©2-~11.3 SXELETONS DEFINING SKELETONS

1.5

They are the version in fragment of their corresponding

expression skeletons =QUOT=, =EXPR= and =SKEL=. The explana-
tiois below will, therefore, be particularly short. It is

to be recalled that these definitions are "temporary," valid
only in S', Recall also that in a list of the form

(%§¥g§§ N1 S1 ... §')

if S' contains (=BEGN= E), the definitions ¥; = S; will be

i

forgotten upon returning to the first set and thei applica-~
tion to &; nevertheless, if $' contains =REPT= or =CONT= in
any one 0 their forms, the definitions Nj = S; prevail:

they are "remembered."

(*QUOT* N1 S1 N2 S2 ... Nm Sm L') makes Nj EXPR Sj
Its value is the content of L' replaced (under
the new dictionary). L' may be omitted. Note": S;
without replacement.

(#EXPR¥ N7 S1 N2 S2 ... Nm Sm L') makes Nj EXPR Sireplaced
Its value is the content of L' replaced undexr the
new dictionary; L' may be omitted.

(#SKEL* N1 S1 N2 S2 ... Nm Sm L') makes Nj SKEL Si
Its value is the content of L' replaced (under
the new dictionary); L' may be omitted.

2-1i.4 SKELETONS CONVERTING EXPRESSIONS INTO FRAGMENTS

(*FRAG* $1) $1 is 2 skeleton which after replacement converts
into a 1list; the value of (*FRAG® S1) is the
content of that list..

The following identity is satisfied:

(*NAME* A1 A2 ...) = (*FRAG* (=NAME= AT A2 ...))

2-11.5 SKEZLETONS OPERATING ON SETS

They are ti.e version in fragment of its corresponding
expiression skeletons (original, page 2—30). Observe for
gpreater detail.

2-40

[image: image60.png]IS
)
[eN

OPERATORS TO CONSTRUCT LISTS, 2-11.8
RECURSIVE (IRAGM)

(#COMP* 51 $2) Content of the complement of S1repiacedand
Szreplaced

Content of the intersection of
previously replaced.

(¥UNON* S| 52 ... Sn) Content of the union of s1, s2, ...
previously replaced.

(#INTS* 31

(*CONC* $1 s2 .., Sn) Join 51, 52, ... previously replaced
in a large list, with the value of (*concx .,
being the content of this list.

(*CART* 81 82 ... Sn) Content of the Cartesian product of
S1, 82, ... replaced.

EXAMPLE. D = ({XXX) EXPR ((a B) (c D)))
(~UNON* XXX (A F C)) = A BCDF
2-11.6 OPERATORS TO CONSTRUCT LISTS

Counpletely described in Section 2-1l, "Operators in
CONVERT. "

Their value is an empty fragment.
§*STAR* X Lg

STDR X L
2-11.7 INPUT AND OUTPUT OPERATORS

Completely described in Section 2-14, "Operators in
COXVERT. "

Their value is an empty fragment.

READ%*

2~-11.8 KECURSIVE SKELETONS

Recursive skeletons apply the various sets of rules
to intermediate results and take the content of the value
cbtained as a valuc. Before applying the corresponding set
of rules, the skeleton S1 is replaced by the dictionary D.

We apply fto S1 the first set of rules with all
the variables returning to their initial state.
This transformation must produce a list as a
result, whose content is the value of (*¥BEGN* S1).

2=l

[image: image61.png]2-11.8 ITERATIVE SKELETONS (FRAGMENTS) 2-11.9

{#*REPT* S1 K1 R1 X2 R2 ... Xn Rn) VWe apply to S1 the set KI,
i.e. R1; furthermore, we define the sets
K2 = R2, ..., Kn = Rn which may be called upon
from any of the rulcs of Ri. This application is
made with the initial dictionary of wvariables,
however, remombering those defined by £QUOTE,

XURE and ZSKELZ; this produces a list as a

value, whose content is the value of (*REPT* PR)

{(#REIT* 51 K)

may be considered as abbreviations of the

, general form

{#REPT* 571)

L

(*CONT* S7 K1 R1 K2 R2 ... Km Rm) We apply to S1 the set K1,
i.e. R1; furthermore, the sets K2 = R2, ..., Km = Rm
are defined to be called upon under rule of RI1.

In R1, all the definitions existing in
dictionary D are retained, i.e. all the variables
connected by RESEMBLE‘plus those initially exist-
ing in M plus those defined by =QUO0T=, ¥*SKEL*,
etc.

This application must produce as a result
a list whose content (fragment) is taken as the
value of (*¥CONT* ..,); if this application
produces an atom, it is in exrror.

(*coNT* 51 K1) may be considered as abbreviations of the

(*CONT* 51) weneral form

2-11.9 ITERATIVE SKELETONS

(*ITER* V1 $1 V2 S2 ... E) V; skeletons which upon substi-
tution will produce atoms.
S4 skelectons which upon substi-
tution will produce sets
(lists).
T expression to be replaced.

The value of (®*ITER* V1 S1 ... B) a Cragaent whose
elements are the result of substitution in E for each occur-
rence of Vireplaced’ an element of the corresponding set

Sireplaced.

(#ITBER* ...) is the content of the list which will
be produced by (=ITER= ...). Sce for more details the
description of =ITER=, original, page 2-33, Section 2-10.9,
and page 5-75. A table of the e[fects of *ITER* and =ITER=
is found in the original, page 2-33; a new implementation of
TTERA is discussed in Chapter VI, page 6-4.

[image: image62.png]2~%1.10 FUNCTIONAL SKELETONS 2-11.10

2-11.10 FUNCTIONAL SKELETONS

Let us assume that a symbol has the meaning of a
function name when introducing the additional modes CONT and
REPT. 1f we see in the CONVERT program the skeleton

(F a1 a2 ... an) (2, o R bas)

TABLE OF SXELETONS IN REPLACE

SKELETONS PRODUCING SKELETONS PRODUCING
EXPRESSIONS FRAGMENTS

Terminal Skeletons

=SAME= *SAME*
(=QuoT= 81) (*QuoT* s1)
EXPR mode EXPR mode
Atoms not in D

0

=LPAR=

=RPAR=
=BLNK=

produce symbols (*DESN* A+)

Substitutional Skeletons
SKEL mode . SKEL mode
Skeletons defining Skeletons
QUOT N1 S1 N2 S2

EXPR¥ N1 R 82
SKEL N1 S1 N2 S2

N1 S1 N2 82 ... §!
N1 S2 N2 82 ..., s7)

N1 S1 N2 $2 ... svg

Input and Output

(*READ* 7}
(=Prnt= $1) *WRIT* %
PNCH 2,

Arithmetic Operations

2-43

[image: image63.png]2-11.10 2=11.10

TABLE OF SKELETONS IN REPLACE (cont.)
|
SKELETONS PRODUCING SKELETONS PRODUCING
EXPRESSLONS FRAGMENTS

Arithmetic Operations (cont,)
N1 N2)
N1)
N1)

Which convert Expressions to Fragments
(*PRAG* 3S1)
Operations on Sets

(*coMp* s1 s52)
) ¥INTS* S1 $2 ...,
L) *UNON* S1 82 ...
)] *CONC* $1 52 ...
) *CART* S1 S2 ...

Random Element

(=RAND= S1 S2)

Operators for the Construction of Lists

STAR X L)
STDR X L)

Recursive Skeletons

BEGN S1)
REPT S1 ., g

=REPT= S1 ...
CONT S1 ,,

=CONT= S1 ...
Tterative Skeletons
(=ITER= V1 81 v2 s2 ... st) (*ITER* V1 s1 v2 S2 ... st)
Operators of Moving Data
DOST Z

c
[(*PcsT* Z
STST Z)

§*DIST* z;

Functional Skeletons

REPT mode
CONT Mmode

[image: image64.png]2-14 OPERATORS IN CONVERT, ARRAY ELEMENTS 2-14

converted into the argument D of REPLACE. The second argu-
ment S is a skeleton, built with a list of primitive skeletons.

As in RESEMBLE, atomic symbols may represent skeletons;
those which are going to be used for this purpose are contained
in the dictionary D, cycle 3. The modes are now:

SKEL, which means that the PARTNER of this atom is a
skeleton, ip which substitutions will be carried
out ultimately.

EXPR, which means that the PARTNER of this atom is an
expression which is simply copied in the skeleton
instead of the original atom.

The designations for modes mow contain four letters
instead of three, which indicates that a distinction is being

made between skeletons and patterns. The argument M of
CONVERT may contain definitions which are only effective as
skeletons, as well as those which are used as patterns. For

a similar reason, the primitive patterns are designated by
3-letter symbols (or less, with OP being the exception),

while the skeletons are designated by combinations of four
letters. In both cases, framing them with = means expressions,
while an * means a fragment.

Furthermore, the dictiomary D may contain expressions
as well as fragments, with the distinction being made by
placing the NAME between parentheses.

The addition carried out between the application of
the left-hand half of the rule and its right-hand half in-
cludes a transformation of the modes VAR, SEQ, MSS, PAV, CNT
into the EXPR mode. See pages 3-47a, 3-47b, original,

2-14 OPERATORS IN CONVERT

An operator differs from a skeleton in that, in addition
to having a value, i.e., to being replaced by something, it
modifies its arguments, so that these are not the same before
and after the skeleton-operator has been replaced. As in
LISP, in CONVERT the operators are powerful, but they require
care when being used, since they permanently alter the ex-
pressions.

ARRAY ELEMENTS

Although not an integral part of the language, the so-
called array elements exist in CONVERT. These are sets of
words or locations contiguous in the memory, where we can
store information. H

2-46

[image: image65.png]2-14 PSEUDO-MODES LARR AND DARR 2-14

The information am array element may contain is
1} hellerith characters and octal numbers, i.e., data, or
2) atoms and lists, i.e., structures. The mixture of both
types within the same array element is not admissible.

Generation of Array Elements which will Contain
Data ~- In the dictionary M of CONVERT, the cycles

A DARR 575) DARR
B DARR (5 4 2) array element

will generate an array element A of 75
words, monodimensional, and another of
40 words, tridimensional, which we will
call B:

for data;
pseudo-mode.

“
2,

array element B

Next, the pseudo-mode DARR changes to EXPR:

A EXPR titlea
B EXPR titlep

where titlegy and titlep are the titles of the array elements
A and B.

The information contained in the previous paragraph
is not necessary; it suffices to reflect that A and B are
array elements, so that, for example, {*DIST* A) will
initialize =DISY= on array element A,

The array elements that contain data are used with
the operators to generate symbols, to move data or for input
and output. These array elements are n-dimensional, and
are protected by the garbage-collector.

A 709 word is equivalent to 6 hollerith characters or
12 octal digits.

How to Generate Array Elements which Contain Expressions
Found in the M dictionary of CONVERT, the cycles

R LARR (63)
U LARR (30 5)

247

[image: image66.png]2-14 DESCRIPTION F OPERATORS 2-14 1

will generate an array-element R, monodimensional, of
63 words, and another, two-dimensional, called U, of

30 x 5 words; both are capable of containing structures.
Next, the pseudo-mode LARR changes to REPT, so:

(R) REPT rule-setp
(U) REPT rule-sety

where the partner is the selection function
for the corresponding array element (mote for lists;
the change of atom to singlet), so that, in pseudo-mode. §
order to find element I, J of the array ele- e
ment U, it is sufficient to say (U I J).
Simililarly, (R 18) is a skeleton whose value is the list and
the atom guarded in word number 18 of array element R.

array element

The changes DARR -~ EXPR

LARR -+ REPT
are made automatically by the processor.

If I say (U) without subscripts, a numeral will result:
the title of the array element.

To Store Expressions in the locations of this array
element, use skeletons

(=KEEP= S U 15 4) its value is skeleton S, replaced

(*KEEP* S U 15 &) its value is an empty fragment
which store in array element U, in its word {15, 4) the value
of skeleton S. The array elements which contain expressions

are used to keep and modify atoms or lists (not fragments),
They have a selection function, they are n-~dimensional, and
the garbage-collector examines their elements to keep them
complete.

We will now give a list of the available operators.
These operators, however, are not implemented in the Q-32,
so that the following description refers only to the 709.

The reader who wishes more detailed information may
consult Reference 8-4g.

Presently, the psuedo-modes DARR and LARR are in the
process of implementation, hence they do not appear in the index in
Chapter VII.

2-14,1 OPERATORS WHICH GENERATE SYMBOLS

=BLNK= whose value is the hollerith character blank
=LPAR= whose value is the hollerith character (
=RPAR= whose value is the hollerith character)

2-48

[image: image67.png]2-11.11 SUMMARY 2-13

where F has been declared a singlet in the REPT mode:
(F) REPT ((P1 81) (P2 s2) ...)

we consider this combination as being equivalent to
(=REPT= (A1 a2 ... An§ * ((P151) ...)

The most common case, of course, is that where the set of
rules which is the PARTNER of F in the declaration of modes
consists of a single rule. This, in addition to being equiva-
lent to a certain type of LAMBDA where the pname and the argu-
ments of a function are identified, permits us to use the
functional notation rather than the rule notation.

CONT Mode. The CONT mode produces a similar substitution,
using =CONT=. F must be declared as a fragment,
in the form (F) -- in the dictionary -- since
otherwise it loses its effect on CDR.

On the other hand, the value of (F AT A2 ...) is always
an expression, so that *FRAG* must be used explicitly if it is
desired that the value be a fragment.

2-11.11 OPERATORS OF DATA MOVEMENT

Operators of data movements work on array elements., Their
value is the empty fragment. They are described in detail in
Section 2-14, entitled "Operators in CONVERT".

DYST z;
DOST Z
PCST Z)
t*STST* z)

2-12 RECURSION

If the skeletons are more complex than those described
above, it can be said that a substitution is made in the CAR
of the skeleton and in the CDR of same, with the results being
combined with a CONS. Note the examples where the CAR has an
influence on the CDR; pages 2-36, 2-37, original. .

2-13 SUMMARY

Depending on how a sequence of conversion rules is
searched, the function RESEMBLE provides as a value either the
atom ¥ or a dictionary which contains values for the different
variables which have been recognized. Some of the variables,
those which are in the PAT or STL mode, for example, may be
ignored. Nevertheless, those which correspond to subsets or
variables may be used to replace in the right-hand half the
skeleton of the rule. Consequently, the dictionary which
results as a value of RESEMBLE is edited somewhat, and is

2-4s

[image: image68.png]2-1h,2 DESCRIPTION OF OPERATORS 2-14.3

=GNSY= whose value is a new numeral whenever consulted again,

(=INTG= C1 C2 ...) its value is the atom obtained by combining
the characters C1, C2, ... replaced; these Cj must
be atoms. (not numerals or lists), consisting of a
single hollerith character; e.g., B, but not BAR.

(*DESN* A) its value is a fragment whose elements are the
atoms which result from the decomposition Areplaced
into its hollerith characters.

=DIST= whose value each time it is consulted is the next
hollerith character extracted from the array element
upon which it had been previously initialized.

=DISO= whose value each time it is consulted is the next
octal digit extracted from the array element upon
which it had been initialized.

(*DIST* Z) whose value is an empty fragment, but which is an
operator initializing =DISI= on array element Z.

DOST Z) whose value is an empt fragment, however, which
Y
is an operator initializing =DISO= on array element Z.

2-1k.2 OPERATORS TO CONSTRUCT LISTS

The symbol ()}, when it appears in a CONVERT program,
always means the same empty list ecach time it appears, without
taking into account how it was origimally formed in the read-—
out, so that additional measures must be taken if a brand new
empty list is desired.

=BILE= Each time it is found, it will produce a new empty list.

STAR X L), whose value is an empty fragment, and which will
gment,
cause the replaced value of X to be stored in the CAR
of Lreplaced, The CAR of L is now X.

{*STDR* X L), whose value is an empty fragment, which will
cause the value of replaced X to be stored in the CDR
of Lreplaced., The CDR of L is mow X.

2-14,3 OPERATORS FOR DATA MOVEMENT

=DIST=
=DISO=

(*DOST* Z)
(*DIST* Z)

(=PACK= C) whose value is the number of hollerith characters
which may still be kept in the array element.
It is an operator which keeps the character C, replaced
in the nearest location available in the array element

described on this page

2-49

[image: image69.png]2-14.3

(=STOR=

(*pCsTH*

{ *STST*

DESCRIPTION OF OPERATORS 2-th. 4

upon which it had previously been initialized. TIts
value is a numeral.

0), same as =PACK=, except that it stores the octal
digit 0, replaced. Its value is (nuyeral) the number
of octal digits which may still be kept in the array
element.

Z) whose value is an empty fragmenot, is an operator
which initializes =PACK= upon array element Z.

Z) is a similar operator-fragment which initializes
=STOR=.

2-1k.4 INPUT AND OUTPUT OPERATORS

For the moment, there are three operators which read

from the tape SYSPIT, write on SYSPOT, and write on a perforable
output in SYSPCH, respectively. They all have as a value
empty fragments.

(*READ*

(*WRIT*

(*PNCH*

Z) readssufficient records of SYSPIT to fill the
array element Z.

Z) writes the content of array element Z, probably
filled with hollerith characters, in SYSPOT. Care must
be taken to place the suitable control characters in
column 1, to activate the control mechanism of the
print carriage.

Z) operates the same way, but places the record in
SYSPCH. Column 1 may mnot be used for control purposes,
otherwise it is assumed that it follows sequentially
column 72 of the previous record.

2-50

[image: image70.png]CHAPTER IITX

DESIGN AND DESCRIPTION Of THE INTERPRETER
CONVERT TO LISP

[image: image71.png]H General Operation

GENERAL OPERATION

3-1 Iniroduction.

CONVERT is presently being implemented in the IBM 709
and AN/PSQ-32 computers through a program written in LISP,
which interprets -~ and follows -- the CONVERT language.

On the 709, MBLISP has been used for its implementation;
Shis is au interpreter of LISP; on the Q-32, LISP 1.5, a
compiler, has been used.

Both LIS$Ps present slight differences, the most dim-
portunt of which are the following:

In LISP 1.5, the empty list () is an atom, NIL.

2. In MBLISP, the value FALSE is the atom F; in
LISP 1.5, the list/atom NIL.

3. LISP 1.5 gives to .), special meanings.

L, In MBLISP we produce a number -- numeral -- by
saying (DEC 8) while the reading routing of

. LISP 1.5 makes this conversion automatically.

5. LISP 1.5 has no (LAMBDA L ...)} or (LAMBDA¥* ...).

6. MBLISP lacks a program feature.

7. There are other differences which have not inter-

fered much.

Functions.

The principal functions used by the processor are:
convert-conv, convert¥-conv#, which apply to the expression E
rule alter rule, recognize =PRI= and =COM=; resemble and
replace, which manipulate patterns and skelctons; edit, which
transforms the dictionary by resemble into D used by replace;
format, which permits recursion to replace convert.

3-2. Content of Chapter IIIX.

This chapter will describe the functions necessary
to implement CONVERT on the IBM 709 using MBLISP.

As frequently as necessary, we will indicate the
differences with respect to the functions necessary for the
implementation in 1.5 LISP Q-32.

[image: image72.png]FUNCTIONS

(CONVERT M I E R) 1. M dictionary of cyvcle 3 of
patterns and. skeletons.

I liist of connectable
variables and fragments --
will be considered of the
UAR mode. ==~
expression to be converted.
dictionary of cycle 2 of
sets of rules.

W=

2. OPERATOR-FUNCTION

The value of (CONVERT M I E R) is the replaced
skeleton of the rule whose pattern matched E.

Nevertheless, there are operator skeletons which, in
addition wo yieldlng a value, cause changes in their argu-

ments, Loy ESENICH messages afs by printed, tapes gE® to
beERR puuched, etc.

3. DEFINITION

The definition of CONVERT IS
(CONVERT [LAMBDA (M T B R) ((LaMBDA (ALIST) ((LAMBDA (LO)
(LaMBDpA {L1) {coNDp ((EET (DEC (QUOTE 99)) (QUOTE =AB65=))
CONV R L1 E }})) L)) e Y

g EITLZI I))
CDDDDR {CDDDDR (ALIST)})

The definition of CONVERT on the Q-32 is found on page 3-48
of the original.

4. DESCRIPTION

Convert modifies I-M by means of (ITLZI I): it initializes
the variables LO and L1 to this value and the variable ALIST to
(CDDDDR (CDDDDR (ALIST)))

Furthermore, the symbol generator =GENSY=
initializes (dec 99). In MBLISP, the function (ALIST) gives
as a value the present A-list; from it 8 elements are erased,
i.e. the four arguments of CONVERT and their corresponding
valucs.,

On the Q-32, since no A-list exists, this step has
bLeen climinated. After the initializations, convert calls
upon CONV.

3-2

[image: image73.png]e Punctions

{coxXvV Q L E) 1. Q dictionary of sects of
rules.
1 dictiomary of cycle 3,
formed by (ITLZI I), or
LO, L¥ or L1.
In any case, L is
the dictionary under which
conversion is made, i.e.
that which will usc RESEMBLE
to comparc patterns with E.
E expression to be transformed.

2. Operator-FUNCTION

(CONV Q L E) applies CONVERT* to the first set of Q.

3. ,DEFINITION

The definition of CONV is
(conv (LAMBDA (Q L E)} (CONVERT* (CADR Q) L E)))

(CONVERT* T L E) 1. T set of rules to be applied.
L dictionary to be used by
RESEMDLE during the appli-
cation of T.
E expression to be transformed
under T.

2. Operator-FUNCTION

(CONVERT* T L E) applies cach of the rules of T until
finding one whose pattern compares with E, and then substitutes
it in the corresponding skeleton of this rual,. If no com-
parison is successful, the value of CONVERT¥* is the expres-
sion B.

Convert* uses CONV¥, which is a function of a single
variable, with L and E as free variables.

3. DEFINITION

The definition of CONVERT¥* is
(CONVERT* (LAMBDA (T L E) (CONV* T)))

[image: image74.png]CONV* 5.2

(coxv¥ U) 1. U set of rules to be applied.

2,

Free variables:
L dictionary to be used by
resemble
E expression to be replaced.
Connected variables:
L* the value of
(RESEMBLE (CAAR T) L E)
is assigned to L¥*

Operator-¥UNCTION.

Applies rule after rule of U to E, accepting the

first comparison.

3.

DEFINITION.

The definition of CONV¥ is

1CONV® (LAMBDA (U} {COND
5)
::;gL%czlaEu) TOUOTE wCOMm}) {CONVE (CDR UI3)
({EG (CAAR U) {QUOTE wPRIx1)} (COND {(DO PRINT®
i {REPLACE (EDIT L) tCADAR U3)1 {CONVE {COR UIINIY
{CATOM C(RESEMBLE {CAAR U} L E33 {CONV® (CDR Ul})
tiaND) C(LAMBDA (L*) (REPLACE (EDIT L#} (CADAR U)Y}
{RESEMBLE ‘CAAR U) L E323 333

DESCRIPTION.

a. If U is null, i.e. if we have arrived at the end of
the set of rules without Tinding one matching E, the
value is B without change.

The result above is important; in fact, it
specifies that at the last one of each set of rules,
the processor "increases" the rule (== =SAME=).

This means that only the rules that modify
expression E should be mentioned.

Nevertheless, sometimes, when we produce frag-
ments as value, it is our aim that il the expression E
matches with none of the rules, an empty fragment be
produced. Then, the programer must terminate its set
with the rule (== ()).

Note: (*rept* (A B =SAME= X) CONJS (

O

b. Rules of the form (=COM=". . .) are ignored.

c. Rules of the form (=PRI= St) are ignored except ifl
the skeleton S1 is printed and replaced.

34

[image: image75.png]IS

ITLZI 3-2

Ef the value of skeleton S1 contains numerals,
they will be converted irto common atoms before being
printed by the printing sub-routine. This observation
mukes no sense on the Q-32.

Printing occurs on the SYSPOT tape, which is
generally an A-3.

Furthermore, if Switch 3 is depressed, the last
record written on the tape will be printed on-~line by
the printer.

Note that if the skeleton S1 contains operators,
the program with the rule (=PRI= 31) will penerally
be different (with respect to the result) from that
without it.

d. Rules whose pattern does not compare with E are
skipped -~ one proceeds to the next rule --.

e. We accept the first similarity or comparison of the
pattern of a rule with E and we proceed substituting
in the skeleton. !

In the program there appears twice (RESEMBLE (CAAR U) L E)

This means that we doubly compute RESEMBLE of the pattern being
compared; this can be avoided by introducing an additional
(LAMBDA (X) ...); nevertheless, the program such as it is

on the previous page requires less of a pushdown. list.

5

5.

FUNCTIONS USED.

(CONV* U) uses RESEMBLE (original, page 3-10),

REPLACE {original, page 3-49), EDIT (original, page 3-90).

(TTLZI T) 1. I list of NUMBERS -~ atoms

and singlets -- to be put
in UAR moce.

Free variables

M dictionary of cycle 3 of
patterns and skeletons.

2. YFUNCTION.
The value of (ITLZI I) is a list which results from
placing, in from of M -~ modified by itlsm ~- the elements

of I, but with with UAR mode and partner ().

This means that if I = (ij ip ... ip)
(ITLZM M) = (MMM) then

(rTLzT Y = (iq UAR () ip UAR () ... ip

VAR () MMM)

il

3-5

[image: image76.png]ITLZM 3-2

3. DEFINITION.

Thie definition of ITLZI is

(xTLzT (LaMBDA (T) (IF (NULL) (ITLzM M) (CONS (CAR I) (coNs
(QUOTE UAR) (CONs (LIST) (ITLZI (CDR I))))))))

4. DESCRIPTION.

5. FUNCTIONS USED.
TTLZM. (described below; see also original, page 3~48)
(ITLZM M) 1. M dictionaxry of cyecle 3 of

patterns and initial
skeletons.

2. FUNCTION.

The value of (ITLZM M) is a list equal to its argument
M, but with the following modifications:

CYCLE IN M CYCLE IN (ITLZM M) NOTES

§xxx) VAR L1 éxxxg VAR ém [@)) L1 list

XXX) CNT N XXX} CNT (M M) If N numeral,
M=N; if not,
M=(dec N)

NAME (MOD) EXP NAME MOD EXPevaluated

The remaining cycles of M pass without alteration to
(itlem m).

Modes between Parentheses.

A mode between parentheses indicates that its partner
will first be evaluated [by EVAL, taking for ALIST the A-list
associated to the variable ALIST] and subsequently this resuls
will be the final "partner."

For example, if outside the CONVERT program
X =(bazrcos) [ships], then the cycle M (VAR) (CDDR X)
is equivalent to the cycle M VAR RCO S)

This means a singlet mode indicates a partner to be
evaluanted. These evaluations cannot make reference to any
onc¢ of the four arguments M, I, E, R of CONVERT, since
ALIST = (CDDDDR (CDDDDR (ALIST)))

On the Q-32, no partners are allowed to be evaluated;
they will be ignored. -

3-6

[image: image77.png]e
1
™~

REDL

3. UEFINITION.

The definition of (ITLZM M) is

(ZTLZM (LAMBDA (M3 (COND f(NULL M) M)
' C1OR INULL (CDR M}) (NULL (CDDR M}}} (COND {{(CONVERTERROR 2 0)

FLISTIY) 3 X .
f{EQ fCADR M) (GUOTE VAR}) (CONS (CAR M) {CONS {CADR M) (CONS
{1F CATOM UCAR M)) [CADDR Mj
{LIST (CADDR M) [REDL (CADDR M1})
(ITLZM (CDODR M)) 1) 1) -
(LEQ {CADR M} (OUOTE CNT1J (CONS (CAR M) (CONS (CADR M) (CONS
fLIST (DEC (CADDR M)j (DEC (CADDR M))) (ITLZM {CHNDR ¥3331)
(EATOM (CADR M))ICONS (CAR M) (CONS (CADR M)(CONS (CADDR M}
€ITLZM (CDOOR M}1 3 } 1)
tHANDY (CONS (CAR #) (CONS {CAADR M) [CONS (EVAL (CADDR M} ALIST
LITLZM (CODDR M)} 1) 3} 3}

4. DESCRIPTION.

The empty list added to the fragments in the VAR mode
is not a new empty list, produced by (LIST), but is the
empty list obtained if we take successive CDRs from L1 until
it is impty.

In this way, the partner of VAR has two observers,
which indicate respectively the beginning and the end of the
associated fragment.

For example, §NNN) VAR én A R B O N) is transformed into

NNN) VAR(/} “\\l>
(BARBON)

In general, all frugments are dealt with this way —- internally

by resemble --; for example, (XXX) VAR ((0 DI S EA) (s E A))
indicates XXX = 0 D I

This transformation to a notation of observers is internal

and automatic; BEDIT then re-transforms the results to the

normal notation -~ of list ~-, to comstruct the argument D

of REPLACE, which uses no observer notation. ’

Furthermore, ITLZM checks the appropriate length of M,

sending an error message if it is not cycle 3. The deflini-
tion of ITLZM on the Q-32 is shown on page 3-48, original.

5. FUNCTIONS USED.
CONVERTERROR (original, page 3-8), REDL (original,
page 3-8), BEVAL.

(iDL K) 1. K list

3-7

[image: image78.png][}
)
N

CONVERTERROR ’ 3-2

2. FUNCTIOXN.

The value of (REDL K) is the empty list obtained by
taking successive CDRs from X until nulling it.

In this way, the value of REDL is always ().

- DEFINITION.

e

The definition of REDL is
(REDL (LAMBDA (K) (IF (NULL K) K (REDL (CDR X)))))

(CONVERTERROR N M) 1. N, M whole numbers (i.e.
atoms, not numerals).

2. ‘Operator-FUNCTION.

Prints an error message whose value is T or necessitates
that the next APPLY be executed, skipping the one being carried
out,

3. DEFINITION.

The definition of CONVERTERROR is

(CONVERTERROR (LAMBDA* (N M) (COND ({@ ¥ (QuoTE 1))
(COND ((DO PRINT (CONC (LIST
(QUOTE {#CONVERTERROR 1% IN (APPEND X Y)
X Is)) (LIST X) (QUOTE (, Y IS)) (LIST Y)))) sxp))))
§(EQ N gQUOTE 3)) (coND ((DO PRINT (CONC (LIST
QUOTE (*CONVERTERROR 3%

IN L, THE DICTTONARY OF RESEMBLE, APPEARS AS NAME REP (PAT N)
THE CYCLE)} (LIST (CAR X) (QUOTE REP) (CADR Y)) (QUOTE (.
fisio) N)W%?)GIVEN THE VALUE 1 . CONTINUE THE CALCULATIONS)))))

SKP))9

g(EQ N (QUOoTE 2)) (conD ((DO PRINT (QUOTE (*CONVERTERROR 2%
(IN (CONVERT M I E R) M DOES NOT HAVE THE CORRECT
LENGTIH)))

() (o) 335

4. DISCUSSION.

indicates an error message in APPEND
indicates an error message in ITLZM
indicates an error message in the REP mode

a.

indicates "no jumps to next APPLY," with T
‘ulue of CONVERTERROR,

indicates "jump to next APPLY."
-

3-8

[image: image79.png]3-2 SKP, DESCRIPTION OF RESEMELE 3-3

c. In all cases sufficient information is printed to
notify what is happening.

Note that CONVERTERROR is a LAMBDA* function, since
we do not wish its arguments to be evaluated -~ we are
intercsted in them as quoted material, i.e. as whole
numbers --.

On the Q-32 LISP, since we do not evaluate the numbers,
LAMBA* may be simply substituted for LAMBDA.

5. FUNCTIONS USED.
CONC, SKP (pages 3-72 and 3-9 of the original,

respectively).

(skp) 1. Free variables
M connected as CONVERTERROR

2, Operator-FUNCTION.

If M = 0, the value of (SKP) is T
M 1, we print an error message and jump to carry
out the next APPLY.

(SKIP) in a primitive function.

3. DEFINITION.

The definition of SKP is

(sxp (LAMBDA() (IF (BQ M (QUOTE 0)) (AND) (COND
. (Do PRINT {QUOTE (*GO
TO NEXT APPLY#*))) (SKIP) })))})

SKP has not yet been implemented on the Q-32.

3.3 DESCRIPTION OF RESEMBLE

(RESEMBLE X L E) 1. X pattern
L dictionary of cycle 3
E expression to be compared.

2. FUNCTION ~ semi-predicate.

The value of (RESEMBLE X IL E) is F or a dictionary
similar to L.

[image: image80.png]3-5 DESCRIPTION OF RESEMBLE 3-3

3. DEFINITION.

The definition of RESEMBLE is
{RESEMBLE (LAMBDA (X L E)
(RESENBLE* (LIST) L (LIST) (LIST X (LIST))
(LIST E (LIST)))))

4. DESCRIPTION.

RESEMBLE calls upon RESEMBLE*, a function of 5 arguments,
which is the one that really carries out the recursion.

(RESEMBLE#* X L E XX EE) 1. X pattern to be compared with E
L dictionary of cycle 3
E expression to be compared
with X
XX pattern to be compared
with EE in case X matches E
EE expression perhaps to be
compared with XX.

Free variables

LO initial dictionary produced
by ITLZI; used in BUILD,
SUB and MSU mode.

Connected variables

NOM connected to a name in
the PAV mode

K4 connected to a gensym

K6 commected to a gensym

2. FUNCTION.

The value of (RESEMBLE* X L E XX EE) is F if there is
noe similarity between X-XX and E~EE, under L, or a dictionary
to L, modified in the identified variables upon finding
similarity.

3. DEFINITION.
The definition of RESEMBLE* is very broad, and is
therefore omitted here; it is found in Chapter VII; further-

more, we will "examine minutely" the definition of RESEMBLE*
to understand how its various patterns operate.

4. DESCRIPTION.

A X is a primitive pattern, it is compared with E,
amd il there is similarity, it is compared with (CAR XX) and

3-10

[image: image81.png]3-3 DESCRIPTION OF RESEMBLE 3-3

with (CAR EE), and so on, until !finding a false response or
until simultaneously exhausting XX and EE.

If X is not a primitive pattern, compare its CAR
with (CAR E), placing its CDR in XX, and also keeping (CDR E)
we: proceed in this manner untll finding a primitive
pattern.

PR
Consequently, if X and T egééérey we will compare the
first element of XX with the first of EE; this makes it a
TRUE function:
(TrRUE (LAMBDA () (RESEMBLE* (CAR XX) L (CAR EE) (CDR XX)
CDR EE))))

If X is not primitive, none of the conditions of COND
in RESEMBLE# will have been satisfied, and the last condition
is then:

((AND) (RESEMBLE* (CAR X) L (CAR E) (CONS (CDR X) XX) (CONS
(CDR E) EE)))

Thus, we see that RESEMBLE* assumes the value of its
dictionary L when XX and EE have become empty:
((~vuLL. xX) (If (NULL EE) L (OR)))

In theé entire program -- see Chapter VII "listed" --
this is the only part where RESEMBLE produces its response T,
or TRUE; in the other cases, if a similarity occurs, RESEMBLE*
calls upon (TRUE), i.e. it continues searching for similarity
between XX and EE.

Note the manner in which RESEMBLE calls upon RESEMBLE*:
(RESEMBLE (LAMBDA Ex L E)

RESEMBLE* (LIST) L (LIST) (LIST X (LIST;;
(LIST £ (LIST)))

A litvle study of the definition of RESEMBLE® will show
that all the {LIST)'s of the definition above are necessary.

5. FUNCTIONS USED.

o-20 3o7 gt 323 3afd sty
RESEIBLE®, e ARJE EouA.., F.EDUCE, mn ENCaL, BUTLD, saME, lllTER—

SECT. Asssoc, Flu\n. VFRM;, oA, DZsMx, REP CONVERTERRGR, m,
.

35
TSN, AsSSece, €70,
The exponents indicate the page where the function
hus been described in the original.

[image: image82.png]PRIMITIVE PATTERNS IN RESEMBLE

b
(=)
W
)
N

PRIMITIVE PATTERNS IN RESEMBLE

2. PROPERTIES.

== compares with anything, list or atom. If various
appesr in a single list, each one of them will compare,
in general, with a different expression.

3. EXAMPLES

If X
=

B

L= () then X will compare with
>)), but not with

nowon
=

o~

o

Il

§ u

NN

L. TMPLEMENTATION

The part of Resemble* which refers to == i
((Eq¢ X (QUOTE)) (TRUE))
_found in the general COND of resemble 8]

']

6. TUNCTIONS USED

TRUE (original, page 3-11)

& =ATO=

2. PROPERTIES
=ATO= compares with any atom -- including numerals,

If various =ATO=s appear within a pattern, each one of
them will generally compare with different atoms of E.

3. EXAMPLES

If X = (A (B =ATO=) =ATO=), L = (), then X will
compare with B = (A (B R} 7), but not with (A (B R) (7))

4., IMPLEMENTATION

The part of resemble* which refers to =ATO= is
((EQ X (QUOTE =ATO=)) (IF (ATOM E) (TRUE) (OR)})

6. TPUNCTIONS USED
TRUE (page 3-11, original)

3-12

[image: image83.png]=NTM= 3-3

=NUM=

2. PROPERTIES

=NUM= compares with any numeral. It compares with
no atoms or lists. If various =NUM='s appear within a
pattern, each one of them will compare in general with
different numerals.

Note that these symbols, such as ==, =AND=, etc.,
which have a special interpretation if they appear as
vart of a pattern, do not have it if they appear in E,
and are then treated as normal atoms.

3. EXAMPLES

X = (=NUM= =NUM= =NUM=), E = (7 8 9), then X will
match with E on the Q-32; on the 709, E would have to
be the value of
(LIsT (DEC (QUOTE 7)) (DEC (QUOTE 8)) (DEC (QUOTE 9)));
consequently, the previous example results in F on the
709.

4. IMPLEMENTATION

The part of Resemble¥* which refers to =NUM= is
((BQ X (QUOTE =NUM=)) (IF (NUM E) (TRUE) (OR)))

5. DESCRIPTION

In MBLISP, (NUM X) is T if X is a numeral; if X is
an atom with a numeric flag; numerals are obtained if we
say (DEC Y) and Y are whole numbers (an atom without
sign nor decimal point, formed by digits). Numerals in
MBLISP have no written representation; consequently, they
cannot be read or printed; (UNDEC NO) if NO is a numeral,
will give as its value its atom or its corresponding
“whole number). :

In Q-32 LISP 1.5, a number is one of the following

forms:
whole number 1 12 +2E4 -35
whole octal number 27Q 27Q3 -1L4Q . =thQr
number with

floating point 1.0 -0.5 +1.75 224,

2.0 +357.75E-3

lHence E is the power of base 10 for whole numbers and
Iloating points;

3-13

[image: image84.png]]

=0RD= 3-3

Or it is the power of 8 for octals; these can only
have positive exponents., Note: a numbexr must begin with
a character + - 0 1 ... 9

It may contain at the most one decimal point.

It may contain the letter E.
Reference: Lisp 1.5 Reference Manual for Q-32.

On the Q-32 we do not need to quote the numbers:
for the same reason, the numbers cannot be used as

conncctea variables: (LAMBDA (1 2 3) ...) will not work;
we must use {(LAMBDA (X Y Z) ...)

6. FUNCTIONS USED

. TRUE (page 3-11 of the original)

=ORD=

2. PROPERTIES

=ORD= will compare with a list whose elements are
arranged in an increasing order.

Among numerals, the greatest one is that whose
value is greatest.

Remember that in MBLISP only positive numerals are
permitted.

Among atoms consisting of a single hollerith
character, the order is that given by its BCD representa-
tation; this means:

01 ..9="'3+AB...T.)-J..R% *bland / 5 ... Z 5 (
i.e., for example, I is greater than A and less tThan K.

Among atoms formed by various lettcrs, among lists,
or among mixed elements, =ORD= is impredictable: never-
the less, it will match or fail.

3. EXAMPLES

—ORD= will match with (2 4 & 6); with (a B), (&), (),
it will not match with A, HOMBR, (6 6 5); and will give
spredictable results with { (4) (B) {(C) }.

[image: image85.png]3-3 ORD

W

L. IMPLEMENTATION

The part of resemble¥* which refers té =0ORD= is
{(EQ X (QUOTE =ORD=)) {ORD E))

6. FUNCTIONS USED

ORD (to be continued).

(orD X) 1. K expression to see if it
checks out.

2. TFUNCTION

If XK is not a list whose elements are arranged in an
increasing oxrder, the value of (ORD K) is F; otherwise, the
elements of XX continue being compared with those of EE.

3. DEFINITION
The definition of ORD is

(ORD {LAMBDA (K} (COND
T(ATOM K} (OR)}

P{DR (NULL K) (NULL (CDR K}}} {TRUE))
€{OR (EO (CAR K3 (CADR K)} (SL (CAR K} (CADR K1)) (ORD (CDR X33}

LTAND) (OR}3 IR

4. DESCRIPTION

ORD assumes that the items to be compared are equal
(2Q) or the first -- that of the left -- is less than that
of the right.

On the Q-32, EQUAL is used to compare two numbers,
and LESSP instead of SL.

5. TFUNCTIONS USED

TRUE (page 3-11 of the original)

The definition in Q-32 LISP is

(((oaa {Laveoa {}

ATOM K} NIL, .
WCLL K) (NULL §CDR X))} {TRUED)

OR (EétkLKEciguﬁ ECADR_‘KB éLESSP {car «) (caor 1)
OkD (COR K}}y (T &sL}})d

{
(

[image: image86.png]3-3 ASSSOC, VAR 3-3

(as550C X L) 1. X atom
L list of cycle 3

2. TUNCTION.

ASSS0C searches for X among the first elements of each
cyecle of L; if it Tinds it, it returns a list containing
sccond and third elements (mode and partner) of this cycle;
if X is not in L, it returns {(()()).

If L= (... X MODO SOCIO ...) [mode partner]
thern (ASSSOC X L) = (MODE SOCIO)

3. DIFINITION

The definition of ASSSOC is

' UASSS0C (LAMBDA (X L) (COND
CONULL L} (QUOTE () ()33y

$HE0 X (CAR L)) {LIST (CADR L) {CaDOR L
LLAND) (ASSSOC X ¢CODDR L3)3 0 n
Yy

& VAR MODE 1. = (... X VAR'SOCIO ...)
is an atom which appears in
the pattern and which is
found in the L dictionary

under the VAR mode.

%

2. PROPERTIES

An atom in the VAR mode causes its partner to be
compared with expression E, by way of EQUAL -- they must
be identical atoms or lists.

EQUAL does not recognize any special symbols in
the partner [or in expression E] such as ==, , etc.

3. EXAMPLES

=G; L=(GVAR(HORMIGAS)),
RMIGA S), then (RESEMBLE X L E) =
(G VAR (H ORMTI G AS))

b'd
E=(HO

Y if E* = G, (RESEMBLE X L E*) = F.

4. IMPLEMENTATION

The part of RESEMBLE#* which refers to the VAR mode is
({Bu (CAR Y) (QUOTE VAR))
IF (EQUAL (CADR Y) E) (TRUE) {OR}))

3-16

[image: image87.png]o=3 EQUAL, UAR 3-3

hence Y is (ASSSOC X L) = (VAR SOCIO); (CADR Y) is the
partner.

6. FUNCTIONS USED

EQUAL (original, page 3-17), TRUE (original,
page 3-171).

(BQGAL X Y) 1. X, Y expressions (atoms or
lists)

2. PREDICATE

The value of (EQUAL X Y) is T if X is the same atom
as Y, or if both are equal lists; otherwise F.

Equal lists are those which have the same written
representation; this means that they have the same number
of elements with the same atoms and arranged in the same
form. They may have a different internal representation;
this means that EQ of two equal lists may be F, although
EQUAL is T.

3. EXAMPLES

X = (A EB ¢ () (({p®)) 7)),

Y = (A (Bc()) (({DE)) F)), then(BQUAL X Y) = T
and (EQUAL X U) = F,

ir U= (a (B¢ ()) ((pEB) (7))
3b. DEFINITION

The definition of EQUAL is

{EQUAL (LAMRDA (X Y} (COND

LLATOM X1 {EQ X ¥))

((NUL‘L X} (NULL Y2

LCATONM Y1 (ORYS

TINULL YY) tORYY

(LEQOUAL (CAR X} {CAR Y3) (EQUAL (CDR X) (CDR Yy

{LAND) {OR))

3 N
In Q-32, BQUAL is a primitive function.
© UAR MODE 1. L= (... X UAR SOCIO ,..)

X is an atom which appears in
the pattern and which is
found in the dictiomary L
under the UAR mode.

3-17

[image: image88.png]3-3 ENTER 3-3

2. PROPERTIES

An atom in the UAR mode matches with any expression,
such as ==, changing after the comparison into a VAR mode
which has as a partner the compared expression. Conse-
quently, if it occurs several times in a pattern, then,
at the corresponding place in expression E, the same
expression must occur.

3. EXAMPLES

) L= (Y UAR **) E = (B A B)
H= (BAC); then

= (Y VAR B)

= (Y VAR (BR))

= F

L. IMPLEMENTATION

The part referring to the UAR mode is

TUEQ (CAR ¥) [GUOTF UAR)} -
(RESEMALE® -(CAR XX} (ENTER (LIST X (QUOTE VAR) £} L)
(CAR EE} (CPR XX) {CDR EFYI)

6. TFUNCTIONS USED

ENTER (to be continued).

(ENTER E L) 1. E 1list which has a length
cycle 3
L dictionary of cycle 3

2. FUNCTION

The value of (ENTER E L) is the L'dictionary, however,
with the content of E added as a cycle.

If E = (NAME MODE SOCIO) L = (... NAME MODE* SOCIO* ...)
then (ENTER E L) = { ... NAME MODE SOCIO ...); i.e. we replace
in L the old cycle by a new cycle contained in E.

3. DEFINITION

The definition of ENTER is
(ENTER [LAMADA (E L) (COND
({EQUAL (CAR F) (CAR L))
(CONS {CAR E)} {CONS (CADR £} [CONS {CADDR £3 (CNDPR L1111}
L1AND)
(CONS (CAR L) (CONS [CADR L) (CONS (CARPR ()
(ENTER E (CONDR L3I111) 1))

3-18

[image: image89.png]I;,:(A (N W) ¥ D) G = (A

PAT, PAV 3-3

PAT MODE 1.:L = { ... X PAT SOCIO ...)
X is an atom which appears in
the pattern and which is
found in the L dictionary
under the PAT mode.

2. PROPERTIES

An atom in the PAT mode causes its partner to
be compared with the expression E under the RESEMBLE
rules in search of similarity. Consequently, the SOCIO
[PARTNER] is treated as a pattern and therefore, in
contrast with VAR, we will indeed recognize there
special symbols.

3. EXAMPLES
X ={ABCD) L= (BPraT (== C) C UAR *)

N W) C D) then

== C) C VAR ¥)

E X L E) (B PAT

F

nn

4. IMPLEMENTATION

The part of resemble* which refexrs to the PAT mode is

((EQ (CAR Y) (QUOTE PAT
RESEMBLE* (CADR Y) L E XX EE))

PAV MODE . L=(... X PAV SOCIO ...)
X is an atom which appears in
the pattern and which is
found in the L dictionary
under the PAV mode.

2. PROPERTIES

Like PAT, an atom in the PAV mode causcs its partner
to be compared with expression E under the RESEMBLE rules
in search of similarity. Consequently, the S0CIO is
treated as a pattern. If such a similarity exists, the
mode is transformed intoe VAR, and the compared expression

passes as a SOCIO.
Then, if in the same pattern the same PAV atom
occurs several times, it must be the same expression as

that which occurs in the corresponding places of E.

PAV is a combination of PAT and UAR.

3-19

[image: image90.png]3-3

PAV 3-3
3. EXAMPLES
E% 1=\ 1(1chz)\ 515’ ?B(X EAX y;?; G=(BB)
B)(c)) I=1(()()) then
B (Y VAR (BA R C A S))
G F .
1t F
) = (Y varR ())

Me¢anwhile, if Y were in the PAT mode instead of the PAV
mode, the results would have been (Y PAT (===)), F,
(Y PAT (===)), (Y PAT (===)), respectively.

4. IMPLEMENTATION

The part of Resemble* referring to the PAV mode is

. (E€6 (CAR Y) (OUOTE PAV)) {{LAMADA (NOM K4 Ks) (REDUCE (RESEMalLE*

K5 [CONS NOM (CONS (QUOTE PAT) {CONS Kg (CONS X4 (CONS (QUOTE
VAR) (CONS E [CONS K& (CONS {OUOTE PAT) (CONS [CADR Y) [ENTER
¢LIST NOM {QUOTE VAR) £) LI 311 311 1)

€ {CONS (LIST) {CONS (QUOTE =0ffa) XX)) {CONS (LISTIEE) 3>)
X(ENCOL X{QUOTE(2 7 A B 6 5)31(ENCOL X(QUOTE(2 & J N & 51133

5. DESCRIPTION

ENCOL produces two gensyms (atoms that have not
occurred before), K4 and K6, and then we ask for
(RESEMBLE* K6 (NOM PAT X6 K4 VAR E K6 PAT SOCIO ... NOM

VAR E ...)} B
(() =pEF= xx) (() EE))

a. Having been before NOM PAV SOCIO, this cycle compares
with NOM VAR E

b. K4 also retains the value E

¢c. We compare K6 —- as a new pattern -- with E instead of
NOM

d. During the comparison of K6 with E, we maintain the
definition NOM PAT K6 [=DEF= in XX will erase this
cycle from the dictionary before starting to compare
(car XX) with {car EE)Z, a temporary definition.

This is done with the objective of permitting
recursive definitions of the NOM pattern of the type
NOM PAV (=OR= =ATO= (NOM NOM NOM)) This definition
is valid, and NOM winds up connected to the greater
expression; for example, if B = ((A A A) B (¢ (D D D) E)),
NOM will wind up connected to the previous list and not
to (A A A) or B, although these expressions also satisfy
the definition of NOM.

#inally, REDUCE reduces the dictiomary, eliminating
the GENSYMS and changing the partner ofa NOM for that of K4,

3-20

[image: image91.png]-3 REDUCE 3-3

6. FHUNCTSONS USED

REDUCE {original, page 3-21), ENTER (original,
page 3-18), ENCOL.

(REDUCE X) 1. X dictionary of cycle 3 or
atom

Free variables:

NOM a name which had the
PAV mode

K6 a name {gensym) connected
to the partner of PAV

K4 a name (gemsym) whose
partner is the value of
NOM if there was simi-
larity.

2. FUNCTION
The value of (REDUCE K) is
a. If K is an atom (presumably F), its value is XK without

modification.

b. Contrarily, it is assumed that K is a list of period 3
and copies it with the following modifications:
I. Cycles whose name is NOM or X6 are omitted
II. The cycle whose name is K4 is changed to NOM
TII. The remaining cycles remain unchanged.

In this way, the new dictionary produced by REDUCE

contains NOM with a partner which is the expression connected
in the VAR mode.

3. DEFINITION

The definition of REDUCE is

{REDUCE (LAMBDA (K} (COND ((ATOM KIK}INULL K} K

({FQUAL NOM (CAR Kj) (REDUCE ((DDNR K})§
[{EQUAL K6 [CAR K}y (REDUCE (CDDOR K13
((EOUAL K4 ICAR K1) (CONS NOMiCONS (CADR K). [CONS (CADDR K1 (REDUCE
(CPDOR K113 133 {{AND) (CONS {CAR K) (CONS {CADR K)j (CONS (CADDR Ki

IREDUCE §CDODR K113 331 13

For the (-32 it is (kepUE (LAMBOA (K]
{Cony {(ATCM) K
{{zaual NoM {£ar K)) (REOUCE (CODDR Kg;)
({ZcuaL K6 (CAR KH (RESUCE (CODOR K)
(%EGLJAL K;\ %CSR K(c ox 1)
CONG Nt CONS ADR K}
(Cons (CADDR K) (REOUCE (CODDR K)})1))

‘ﬂé%ﬁ'f(c‘i?;?,ii {cors (CADBR K) " {REDUCE (CDDOR KINNNI

[image: image92.png]-3 STL, STG, SUB 43

& STL 570G MODES i. L= { ... Y STL X ...)
Y is an atom which appears in
the dictionary L in the
STL [STG mode. Yts partner
is a numeral.

2, PROPERTIES

An atom with STL mode (strictly less) will compare
with E if it is strictly less than the partner of this
atom. Generally, such a comparison only makes sense if
moth B and PARTNER are numerals or atoms consisting of
4 single BCD character (see 3-3, =ORD=).

STG works similarly, only E must be strictly
greater than the partner.

3. EXAMPLES

X =(AB) L= (ASTL 6 B STG 4) matches with
E={29)
4. IMPLEMENTATION

The part of RESEMBLE¥ which refers to the STL,
S$TG modes is

C(EG (CAR ¥) {OUOTE STLI3, (TF ISL € (CADR Y1) (TRUE) (OR})}

t1EQ {CAR Yy {QUOTE SFGYI {IF (SL {CADR Y} E) {TRUE} (OQR)}}
@ SUB MODE 1. L =(... Y SUB PATRON ...)

(pattern]

Y is an atom which appears in
the L dictionary with the
S5UB mode. Its partner is a
pattern.

2, PROPERTIES

An atom in the SUB mode matches any list; from it
it selects the elements that present similarity with its
partner and changes to the internal SEQ mode, having as
a partner a list formed by the elements selected, added
to the front of the pattern used to select them.

This means SEQ now has the following information:
the criterion ~- the pattern -- to select elements and a
iist ol the elements selected. So that if the atom occurs
again in the pattern, it must compare with a list and
select Lrom it the same elements as from the first, re-
gardless of order. '

~22

[

[image: image93.png]55 SUB, SEQ 3-3

The SUB mode requires that the sub-sets selected in
different compaxrisons be the same.

4. IMPLEMENTATION

The part of resemble* which refers {to the SUB
and SEQ modes is
((E0 (CAR Y) {OUOTE SUBIY
(iF (ATOM £) (CR) (RESEMBLE® ICAR XX) (ENTER (LIST X
(OUOTE SEGI (CONS (CADR Y1 (BUILD (CADR Y} €311 L)
(CAR EE) ICOR XX) (COR E£11))
(LEC (CAR Y3 (QUOTE SEG))

(1F (ATOM g3 (OR)} (IF [SAME (CDADR Y) .(RUILD (CAADR Y} E}}
(RESEMBLE® (CAR XX) & (CAR EE1 (COR XX) {CDR E€3) (ORIYVY

5. DESCRIPTION

. The first time that a comparison is used, the
cycle Y 5UPR PATRON [pattern] is transformed into

Y SEQ (P N Eq Ep ... Eg), where the Ej's form the
sub-set oi ich has the property of comparing with
the PATRON pattern.

Consequently, the next times that Y is called
upon to compare, it will meet the SEQ mode.

BUILD selects -- from the new list -- the elements
©25' which compare with PATRON {which is now CAR of the
S0CI0Y; the value of BUILD is the new sub-set
(E1 Ez P Er')? SAME comparces this new list with the
oid (E7 B2 ... Ex); if these lists are the same, in the

sensc¢ that they contain the same elements -- the order
is unimportant, since sub-sets are involved ~-- the
compurison is accepted; otherwise, the value of RESEMBLE
is F.

If there is similarity, the cycle delivered by
RESEMBLE is
Y SEQ (PATRON Eq7 Ez E3 ... Bx)
so that EDIT must fix it up slightly.

6. TFUNCTIONS USED
BUILD, SAME (described below).
{BUILD P & 1. P pattern
E list.
2. PUNCTION

The value of {BUILD P E) is the set of E elements which
compare with pattern P.

[image: image94.png]-5 BUILD, SAME, ELEMENT 3-

W

1
This comparison is made independent of the comparisons

made by RESEMBLE®; we use here the dictionary LO, the initial
dictionary made by ITLZI on M-I, arguments of CONVERT.

5. wEFPINITION
The definition of BUILD is

(RUILD (LAMBDA (P E} (COND
INULL E) €1
[CATOM (REZEMBLE P LD (CAR E)))
{BUILD P (COR E}D)
C{AND} (CONS [CAR E) (BYUILD P (CDR EX})}
13

(SAME U V) 1. U, V lists —-- sets --

2. Predicate

The value of (SAME U V) is T if U and V are lists
which contain the same elements, although in a different

order; otherwise F.

U and V have to have the same number of elements.

3. DEFINITION

The definition of SAME is
1SAME (LAMBDA (U V) (CORD
CONJLL US (NULL V3

CONULL V3 (ORI}
(LELSMERT (CAR U3 V) (SAME (CPR U) (REMOVE (CAR U} Vid1,

L(AND) {(ORJ}}

MY
L. EXAMPLES

(BARCA) and (C A R B A) make SAME T; (coL)} and
(G 0 0 L) do not. .
5. FUNCTIONS USED

SAME uses ELEMENT, REMOVE (described later).

(ELEMENT X L) X expression, L list.

prodicuti: T if X is an element of L; if it belongs to L
on thie Pirst level.

[image: image95.png]REMOVE, MSU, MSS 3-3

(RENGVE X L) X expression, L list.

Function: Remove, removes from X the first occurrence of X.

DEFINITIONS :

The definitions of ELEMENT and REMOVE are:

CELEMENT (LAMBDA (X L) (AND (NOT (NULL L)y
(OR (EQUAL X (CAR L)) (ELEMENT' X (CDR LIIII))

{REMOVE (LAMBDA (X LY (COND
SONULL L) L)
{(EQUAL X [CAR L)} {CDR L)} -
({AND) CCONS (CAR L) IREMOVE X (CDR L)1)}
[2) -

ELEMENT is a primitive function on the Q-32, called MEMBERX

[4]

MS5U MODE 1. = (... Y MSU S0CIO0 ...)

is an atom which appears in
the dictionary L with the
MSU mode. Its partner is

a pattern.

=

2. PROPERTIES

An atom in the MSU mode matches with any 1list;
from it it selects those elements that have similarity
with its partner and changes to the internal MSS mode,
then having as a partner a list FTormed by the selected
clements, adding to it in front the pattern used to
select them.

MSS behaves like SEQ in the sense that if it is
used again in compariscns, it uses CAR of the partner
again as a pattern to form a new list. Nevertheless,
in contrast with SEQ, it is not required that both sub-
sets thus obtained are equal, except that MSS take its
intersection,

The MSU mode then collects the maximum sub-set
common to the lists with which it was compared.

h. IMPLEMENTATION

The part of RESEMBLE* which mentions the MSU and
MSS modes is:

[image: image96.png]ATOMS NOT IN L, (), =BOR= 3-3

{{e0 {CAR Y? (QUOTE MSU)}
t3IF {ATOM E} (OR) (RESEMRLE® 1CAR XXt (ENTER {(LIST X.. M
{OUOTE MSS) (CONS (CADR Y) {BRUILD {CADR ¥y €331 LY
(CAR EE)} (CDR XX} (CDR EE}}NY B

H(EQ (CAR Y] (QUOTF MSS)) .)
tIF (ATOM E) (OR) (RESEMBLE® iCAR XX) {ENTER {LIST X
(QUOTE MSS$) (CONS {CAADR Y) {INTERSECY {CPADR Y) (RUILD
CCAADR Y1 £3)1) L) (CAR FE) {CDR XX) (COR €€V}

ATOMS THAT ARE NOT IN L

2. PROPERTIES

Tf an atom does not appear defined in the L dic~
tLiounry, nor is it one of those recognized by RESEMBLE
(fox‘ example, =DEC=), then this atom represents itself;
it will match with E only if it is precisely the same
atom.

3. EXAMPLES

ffXx=(FIDEL), L ={(), then X alone will
mateh jwith (F I D B L), and not with (c As TR O), for
example.

4. TMPLEMENTATION

The part of RESEMBLE¥* which mentions atoms that
are not found \--i\n the dictionary is
((axp) (IF (EQ X\E) (TrUE) (OR)))
.

In Q-32 LISP it wa-s\‘ngcessary to state:
(T (IF (EQUAL X E) (trRUE) NIL)) (EQUAL was used along
: X is a number].

EMPTY LIST

An empty list only matches with another empty
1ist -- not necessarily the same --

((vuLL X) (IF (NULL) (TRUE) {OR)))

=BOR=

A "reserved" atom, of internal use. It causes
the first cycle of the L dictionary to disappear, such
as is done by =DEF= when it appears as CAR of XX. It is
not expected that the CONVERT programer makes use of +this
atom in his patterns. He compares it with an empty
fragment, so to speak. L
((#Q (cAR X) (QUOTE =BOR=)) (RESEMBLE* '(CDR %) (CpDDR L) E

-~ XX EE))

3-26

[image: image97.png]=QUO=, =DEC=, =DEF= -7

{=quo= P“.) 1. P1 expression (pattern).

2. PROPERTIES
The expression P1 by itself is compared with E,

using EGUAL. No special symbols are recognized in P1;
RESEMBLE is not used in the comparison.

3. TIMPLEMENTATION

The part of RESEMBLE#* which manipulates =QUO= is
{{Bw (CAR X) (QUOTE =QU0=)) (Ir (EQUAL (CADR X) E) (Tmmg
)

(ow)
{=DEC= P1) i. P1 is an atom

2. PROPERTIES

Compare (DEC P1) with E; convert P1 into a numeral
and compare it with E, searching for equality. It is
assumed that E is a numeral.

3. EXAMPLES

It E = (DEC (QUOTE 8)), L = (), then X = (=DEC= 8)
11 compare with E. On the Q-32, assuming that there is
1o need to convert an "entire" atom to numeral, the use
ol =DEC= is mnot necessary; therefore, for LISP 1.5,
P1) is equivalent to (=QUO= P1).

&, IMPLEMENTATION

The portion of the Resemble* function xrelated to

=DEC= is
{{EQ (CAR X) (QUOTE =DEC=)) (IF (EQ (CADR X)) ®B) (?RU?))
{OR)

(=DEF= N1 P1 N2 P2 ... Nm Pm P') 1. The Ni's are names;
i.e. they are atoms
or singlets. .
The P;'s are patterns.
Also P'.

2. PROPERTIES

Compare the P' pattern with expression L; during

3-27

[image: image98.png]Qo

=AND= 3-3
this f‘O'n'ux]"lbOD, i.e. within P', the L dictionary is in-
crevsed .1 the cycles
NT PAT PP N2 PAT P2 ... Nm PAT Pm

=DEF= defines temporarily the Nj's as being the
VAT D

If P' is omitted, Pm is compared with E.
3. EXAMPLES

4, IMPLEMENTATION

The portion of the resemble¥ function is

{1EOG (CAR X) [OUOTE wDEF=3)
LIF (NULL (CODR X)) (RESEMBLE® (CADR X) L E
. xx]33
{RESEMBLE® (IF {NULL (CONDR xn(c;mnn x)
CIF (NULL (CODDDR X33 (CADDDR X1 {CONS {CAR X)
(CDDOR X113)}
(CONS (CADR X) (CONS {QUOTE PAT) (CONS ({CaPNR X) L)¥i
£ (CONS (LISTIICONS (QUOTE =OFF=) XX3} (CONS (LISTIFENY 3

and. furthermore

((EQ (CAR xX) (QUOTE =DEF=)) (RESEMBLE* X (CDDDR L) E
(CDR XX) EE))

5. DESCRIPTION

a. If it is of the form (=DEF= P1), P1 is compared
with E.

b. X of the form (=DEF= N1 P1) or (=DEF= Nt P1 P')
causc a RLSL‘VKELL* to be executed
[P1 or P (N1 PAT P1 LLL) E (() =DEP= xXx) (() EE)

¢. X of the general form (=DEF= N1 P1 N2 P2 ...)
causes that a function be executed that has the form
RESEMBLE# (=DEF= N2 P2 ...) (¥1 PAT P1 LLL) E (() =DEP= XX)

EE)

We add =DEF= to XX so that, upon completing the com-
parison between pattern P' and X, its first cycle be erased
from L. Thus we obtain temporary definitions, valid only
when comparing P'.

It is necessary to place () in front of =DEF= in
order to hide it.

{=AND= P1 P2 ...) 1. P1, P2, ... patterns

[image: image99.png]W

=0R= 3=-3
2. PROPLERTIES
This pattern matches with 1 if each onc of its Dj's
misto s with . The dictionary accumulates in the sensc
Lhat identification of va bles during the comparison

o’ P1 is retained -- and uscd -- for the comparison of

Pz, and so Torth; this implies that if the same connectable
variable for cxample, UAR, PAV modes] appears in various
Pi's, it must be compared with the same expression in the
viarious comparisons.

3. EXAMPLES

= (=AND= (==

== B = ==)) will match with
(A 2 C) but nov with {0
)

with L = { (XXX) UAR ()),
= (=AND= (B XXX A ===) (=== A XXX B ===)),
:,-(AOBMNARBF/\MN’}O;thon

(RESEMBLE X L B) = ((XXX} VAR (M N))

Note: the previous result will appear in the notation
ol observers, i.e.
{ Y VAR ((M NARBFAMNBO) (ARBFAMNBO))),
sinece this is the form in which resemble* manipulates the
Iragments. Before going on to the EXPR mode -- to be used
by REPLACE --, they convert to a conventional notation,
with RESTAUR.

L, IMPLEMENTATION

The part of resewmble* which manipulates =AND= is

SUEO (CAR X) {GUOTE wAND=)} (COND
CINULL (CDR X33 {TRUE)
((AND) (RESEMBLE (CADR X3 L € (CONS iCONS (CAR X) (CDDR X3y XXy
{CONS £ EEXINY

5. DESCRIPTION

=) comparcs with any cxpression -- such as ==

NDh= I"l) is equivalent to P1 only,
ND= P1 P2 ...) causes RESEMBLE¥* to be executed
P1 L E ((=AND= P2 ...) XX) (E EE)

.

(=
b. (=

(=O0R= P1 P2 ...) 1. P1, P2, ... patterns

., PROPENTIES

A comparison between E and any of the Pj's is sought;

the {irst simllarity is wccernted. -

3-29

[image: image100.png]=3 =NOT= et

3. = EXAMPLES

=0R= is used primarily to define recursive patterns.
For exanmnple, in the L dictionaxy, the cycle
B PAT {=OR= =ATO= (B B)) defines B as a binary tree;
this means it is
1. an atom
2. a list formed by two elements, each one of which
is dn turn a binary tree.
As such, B will compare with
({a B) ({(¢c (D E)) (F E(G H) I)))), but not with (A B C).
X = (=DEF= R (=0R= A)} matches a list which
contains an A at any level.

=== R ===

4. IMPLEMENTATION
The part of RESEMBLE* which manipulates =OR= is

((EQ (CAR X) (OUOTE aORw}] (IF (NULL (CDR X)) {OR} ({LAMADA (Y7
{IF (ATOM v) (RESEMALE* {CONS (CAR X) (CDOR X)) L E XX EEY Y)
3 {RESEMBLE® (CADR X) L E XX EE)I1)

5. ~DESCRIPTION

a. {(=OR=) matches with nothing; it is the "un-
matchable" pattern and always yields T as an answer.

b. (=OR= P1 P2 ...) is manipulated as follows:
if RESEMBLE P1 L E matches, it is accepted; if not, we
proceed with RESEMBLE (=OR= P2 ...) L E
Note that upon defining recursive patterns, the terminal
condition goes [irst.

@: (=NOT= P1) 1. P1 pattern

2. PROPERTILES

P1 is compared with E. If it matches the result
ig ¥, If it does not match, the result is L, and it is
accepted and the comparison continues. So that (=NOT= P1)
matches with an expression which has no similarity with P1.

3. EXAMPLES

(A B (=NOT= C) D) will match with (A B R D)
but not with (A B C D).

[image: image101.png]4. IMPLEMENTATION

The part of resemble¥ which describes =NOT= is

{(E0 [CAR X) (QUOTE .aNOT=)) (IF (ATOM (RESEMBLFW I‘CAI);I Xy L E RX E&¥}
{RESEMBLE® (CAR XX} L (CAR EE} (CDR XX} (COR FE)} {ORV)} ° :

z. PROPERTIES
=== matches with any fragment, of arbitrary length,

including the empty fragment or the zero fragment -- that
whose length is zero --,

‘3. EXAMPLES

A) matches with any list terminating in A:
A), (A), etc.

=== ===) matches with any 1list; it is equivalent

., IMPLEMENTATION

The part of resemble* which becomes charged with
== 1is

C1ED (CAR X3 (QUOTE e=s)) (IF (NULL (CDR X3) (TRUED.
CcLAMBDA (Y} CIF {ATOM Y) (IF (NULL E) (OR)
(RESEMBLE® X L (CDR E} XX EF)} Y)) {RESEMBLE® (COR X3 L.E XX EEN}

5. DESCRIPTION

) matches with any list.

= abc) is treated as follows:

I. We compare (a b ¢ ...) with E and il it
matches, it is accepted [this mcans that

matched with the empty Iragment]

ITI. If I does not match, we compare
with (CDR E) (recursive condition).

TII. Nevertheless, if IX exhausts E without finding

a comparison, the answer is F -- there was

no similarity --. This means that === when

it appears within an X pattern, will compare

with any suitable fragment, so as to permit

a comparison between the remainder of the X

pattern and the remainder of the E expression.

abec ...)

3-31

[image: image102.png]3-3 FRAGMENTS, ASSSOC*, VAR 3-3

FRAGMENTS

The modes listed below correspond not to atoms that
appear in the L dictionary as atoms, but to atoms which
appear in the dictionary as singlets (lists of atoms). This
1 s these atoms as representing a fragment; their partner,
in general, is a list whose content, called associate fragment,
will be compared with some fragment of E. The variable Y
mentioned in the code is connected to the value of (ASSS00* X L),
which searches for the atom that represents a lragment in the L
dictionary; it scarches it as a singlet.

This function will be described below.

(AS850C* X L) 1. X atom
L dictionary of cycle 3.

2. TFUNCTION

ASSS0C* seurches X within the first element of each
eycle (i.c., merely inspects the cycles that refer to singlets);
if it finds a cycle that satisfies, ASSSOC¥* returns as a value
a list formed by the mode and the partner of that singlet;
otherwise it returns (() ()).

3. DEFINITLION
The definition of ASSSOC* is

TASSSOC* {LAMBDA iX L} (COND
CINULL L) fQUOTE (1) (133}

CLATOM (CAR L)) {ASSSOC* X (CDDDR LI}
((EQ0 X (CAAR L)) {LIST {CADR L) (CADOR L3¥)
tLAND) (ASSSOC® X (CNDDR W1))

IR}

4, DESCRIPTION

This function, like ASSSOC [see page 3-16 of originalj,
returns as a value (() ()) when atom X is not in the L
dictionary; this is designed so that none of the examinations
made on (CAR Y) or the CAR of the value of ASSSOC* be satis-
fied, and thus the final condition is reached; therefore, I
repeat, 1f an atom is not special (for example, ==) and is not
in the L dictionary, it represents itself, wherefore, it is
necessary that (EQ X E).

© VAR MODE, fragments. 1. L = (XXX (XXX) VAR SOCIO ...)

3-32

[image: image103.png]VAR, FRAGMENTS 3-3

XXX is an atom that appears in
L as a singlet. The partner
is a list with two observers,
i.e. is a list that contains

. two lists.

By convention, when we
say that a cycle in L is, for
example, (YYY) VAR (A B), we
understand as a short notation
instead of mentioning the ob-
servers, that they could be,
for example,

(YYY) VAR ((A B P N 0) (P ¥ 0))
The difference between these
observers, i.e. the set of
elements in the first 1list and
not in the second, is the wvalue
of the partner. ITLZM changes
from the normal notation to
that of the observers; EDIT,
through RQ?TAUR, does the
inverse. [restore]

2. PROPERTIES

An atom in the VAR mode causes the associate frag-
ment to compare with the corresponding fragment of - the
expression E, searching for equality, i.e. through EQUAL.
No special symbols are recognized in the associate frag-
ment.

3. EXAMPLES

X = (XXX XXX XXX) L = ((XXX) VAR (R U 2)) matches
with E= (RUZRUZRTUZ).

4. IMPLEMENTATION

The part of resemble* that manipulates the frag-
ments in the VAR mode is

((EQ (CAR Y) (QUOTE VAR)) (FRAG (CAADR Y) E))

5. DESCRIPTION

FRAG compares through equal the elements of the.
partner with the first elements of E until the partner is
finished (until both observers coincide); if they axe
equal, the calculation continues: it is called (TRUE) 3
otherwise an F answer is obtgined.

3-33

[image: image104.png]- i ot
B Voo
. BN
. o
e VeT
B o P. T “iste
RO is-is F is the snents of &
: b sompared under JUAL; oTher-
ERR .sntanue compa ting.
i VT
e de
> A (conn (& ¢
CFADADR Y)i RESEMRLE® .COR X) L % X P
AR R LU TONULL 7Y WORDD

€303 CAR R) 1€AR 7)) A7 (£OR R) (CDR <313 ((ANDJCORYY i3

;o the rigiai or (OND
wise chey are conpared

avpears immediatcel
are idemntical, oul
enqual; when hot sservers coincide
ca Lad To be ownE tat aav: eady bcen
mpare the (CDR X) -~ ... X witaout this XXX
peern matchea -- against the B whuch

i.e. 2 k
mpared) wa
atom whir? e
consinus -t .

v e (pege =17 of 11e originzl.

[image: image105.png]= UAR, FRAGMENTS, RED 3-3

o YAR MODE, fragments. 1, L = { ... (XXX) UAR SOCIO ... }
XXX is an atom which appcars
in L as a singlet -- represent-
ing a fragment --. The partner
is a list -- not two obser-
vers --.

2. PROPERTIES

The UAR mode is transformed into a WAR mode,
changing its PARTNER, which is a list, to the representation
ol two observers, which as always, indicate the beginning
and end of the first list. It is the WAR mode which does
11 the "heavy work.™

b LMPLEMENTATTON

' The part of resemble* which manipulates fragments
in the UAR mode is
((Eq (CAR Y) (QUOTE UAR)) (RED (CADR Y) E))

6. - FUNCTIONS USED

RED (described on this page).

(RED R B) 1. R, B lists
Free variables:
X L E XX B2 ~- used by
resemble®

2. FUNCTION

Compares the elements of R with those of B, in search
of equalivy. If there is equality, it calls upon resemble¥®
to cuntinue comparing, but changing the UAR mode [Lrom (car X)
to WAl:, and its partner to list with two obscrvers.

TL there is no equality, or if B ends ahead of R, we
obtain T,

3. DEFINITION

The definition of RED is

(RED (LAMGDA (R @) iCOND ({NULL R} (RESEMBLE® X (ENTER {LIST 1iis7
(CAR X)) (QUOTE WAR) (LIST € B)) L} £ XX EE1)
{{NULL B) (ORI}
T(EOUAL (CAR R} {CAR B3 {RED {COR R} (COR B1yy
(FAND) (ORI} D1})

[image: image106.png]3-7 VFRAG 3-3

. The first elements of this fragment be the same as those
of the associate fragment (see also RED, note item 6).
u. The rest of the elements of X compare with the rest of
the elements of E.

If this similarity is possible, then WAR is trans-
formed into VAR, and the associate Tragment is now pre-
cisely the fragment with which it matched. Thus if an
atom in the WAR mode is found several times in the X
piattern, then in the corresponding places of the I ex-
pression the same fragment must appear.

4. IMPLEMENTATION

The part of RESEMBLE* which mentions the WAR mode is

(EEQ (CAR Y) (OUOTE WAR)} fIF TNULL ICDR X)) (VFRAG [CAADR Y) £)
. ELLAMADA {R) (COND (({ATOM R) (CORD{{NULL
E} (OR)) t{AND) (COMPA {CAADR Y3} E3}1)) ({AND) R1)}
{RESEMALER X (ENTER (LIST (LIST (CAR X)) {QUOTE VAR)
CCADR Y3} L) E XX EE)7 % .

5. - DESCRIPTION

a. If XXX was the last fragment contained in X,
then its final length is known, wherefore it is called
VFRAG, which compares the content of the partner of XXX
with the content of [, accepting or rejecting the assumed
similarity immediately. If there is likeness, VFRAG
changes WAR to VAR with the proper partner, as described.
Otherwise F results.

b. WAR is changed into VAR, and it is established
if there is similarity; if it exists, it is accepted.

c. In the opposite case, the length of the tentative
fragment is increased, returning to the WAR mode. This
is the recursive condition. F is obtained if E ends
(NULL E) = T; this means that the tentative length of
the fragment can no longer be increased.

6. FUNCTIONS USED

VFRAG, COMPA (described below); ENTER (page 3-18
of the original).

(VFRAG A B) 1. A, B lists

Free variables:

Y connected to the value of
(ASSSOC* X L) or a list of
the form (WAR SOCIO)

3-37

[image: image107.png]WAR, FRAGMENTS 3-3

4. DESCRIPTION -

When the UAR mode calls upon RED, it does so in the
fori {RED {CADR Y) E), so that, originally, B is E, the
expression to be compared.

¥e then begin to compare the elements of R -- which is
the PARTNER -- against the first elements of E; il this com-
parison is successlul in all elements, R will rcemain empty;
4 new cycle is then formed under.the same NOMBRE [name]
(sin

let), but as a partner we will have (LIST & B), i.e.:
%o tite 1c¢l't an observer to the original list; to the right an
vbserver "B] to the clipped list; the difference between the

two is the value of the associate fragment.

5. FUNCTIONS USED

EQUAL (page 3-17 of the original).

6. XNOTE

By implementing RED we see that the pariner of a UAR
frazuent has the following uses:

1. Iy it is an empty 1list, it indicates that the f{ragment may
match with any convenient fragment, including the empty
ragment.

2. 1v it is a list that contains some elements, this indicates
that it may match with any fragment of a convenient [inal
length, provided this fragment has as jits first elements
the elcmenis of the partner.

This means that the partner of a fragment in the UAR
mode indicates the elements with which the fragment must
begin to match.

© WAK MODE, fragments 1. L = { ... (XXX) WAR SOCIO ...)
XXX is an azom which appears
in the L ionary as a
singlet, Its partner is a list
which contains two observers.

PROPERTIES

N

WAR is an internal mode; it is not expected that
the programer make explicit use of this mode. WAR oripginates
in the UAR mode, {rapgments.

A fragment-atom in the WAR mode will compare with a
Praguent of arbitrary length, provided that:

[image: image108.png]3-3 COMPA 3-3

X L E XX EE -~ variables of
resemble¥*.

2. Semipredicate-FUNCTION

The value of (VFRAG A B) is F if the elements of A
are rot the same as the first elements of B, or if B is
shorter than Aj; otherwlse wc continue with resemble¥, but
witti WAKR chanped into VAR, and as a partner a list conbuining
as the l'irst observer 13, and as the sccond observer a (),
formed by REDL. This means it has as an associate [fragment
“ie content of E.

The question in the dimplementation of WAR:
(i (NULL {CPhR X))} (VFRAG {CAADR Y) E) ...) is notl necessary,
since, if this tentative length of the [fragment does not
match, because it is too short, COMPA increases more and more
until the final length is obtained (the total length, the
entire content of expression E); nevertheless, in patterns
which have connectable fragments with the last element,
VFRAG provides specd.

3. DEFINITION
The definition of VFRAG is
(VFRAG {LAMRDA (A R} [COND (& €0

A (CADAPR Y)} {RESEMALE# (CAR XX) (ENTER (LIST (LIST (CAR X})
(QUOTE VAR) (LIST E (REDL 8233 L) (CAR FE} (CDR XX} (COR EEND)

[INULL 8) (OR))
C{EQUAL (CAR A) (CAR BY)} (VFRAG (COR A} (CDR B1Y}
({AND} tOR)] 1))

4. DESCRIPTION

The question (EQ A {CADADR Y)) investigates if A ~-- the
first observer -~ is equal to {cadadr Y), the sccond observer.
If this is so, it changes WAR to the VAR mode, the first ob-
server is E, and the second, (). Othcrwisc it compares by
way of caual element after element of the [irst observer with
E, until the observers coincide or until B s exhausted.

In VFRAG, B is initially connected to E,

. FUNCTIONS USED

ENTER (page 3-18, original), REDL (page 3-8, original).

(coxPA R B) 1. R, B lists

Free variables:

[image: image109.png]3-3 PAT, FRAGMENTS 3-3

Y comnected to the value of
(A$SS0C* X L), or a list of
the Torm (WAR SOCIO)

X L E XX EE -~ used by resemble*.

2. Semipredicate-FUNCTION.

The value of (COMPA R B) is P if the elements of R arr
not the same as the first elements of B, or if B is shorter
tiwn R; otherwise we continue with resemble¥*, but in the
partner, the sccond observer loses an element, i.e. the new
second observer is the CDR of the old second observer. Thus
the teniative fragment in one element is increased. The
WAR mode¢ is preserved -- this means that the fragment, if
necessary, can grow more.

3. DEFINITION

The definition of COMPA is

(COMPA (LAMBDA (R B) {COND [(NULL R) (OR})
TNULL B8) (OR)) .

i 2]

R (CADADR Y3) (COND {IFOUAL (CAR R) (CAR B!
{RESEMBLE® X (ENTER (LIST (LIST (CAR X3} [QUOTE WAR) {LIST
{CARDR Y} UCDR R11} L) E XX EE}) ((aNP){ORIID 3

CIEOUAL {CAR R) (CAR 8)) (COMPA (CDR R) {CDR BI})
CLANDY (ORY) 11} | s

@ PAT MODE, fragments 1. L= (... (XX) PAT SOCIO vee)
XXX is an atom which appears
in L as a singlet under the
PAT mode.

The partner is a list.

2. PROPERTIES e

An atom under the PAT mode represents a fragment
pattern; it causes the content of its partner, i.e. its
associate fragment, to take its place in X, and this new
X is compared with E. All sorts of special atoms recog-
nized by RESEMBLE are found in the partner.

3. EXAMPLES

(A XXX B) if L = ({XXX) PAT (+ = =) + UAR *)
then will compare with E = (A XRI B), yielding the
value ({XXX) PAT (+ = =) + VAR X); in turn, it will pot
compare with (A (+) B).

[image: image110.png]e

4.

PAV, FRAGMENTS 3-3

IMPLEMENTATION

The part of resemble* which loads the Iragments

in the pat mode is
(tEG (CAR Y) (OQUOTE PAT3)

PAV

2.

{RESEMBLE® (APPENo {CADR ¥) ECDR X)) L E XX °FE})

MODE, fragments 1. L = (... (XXX) PAV SOCIO ...)
XXX is an atom which is found
in L as a singlet under the
PAV mode; its partner is a
list whose content will be
treated as a pattern-fragment,
as in PAT.

PROPERTIES

As in PAT, an atom under the PAV mode represents

a pattern-fragment; it causes the content of its partner,

il.e.

its associate fragment, to take its place in X, and

this new X compares with E. I{ the comparison is success-

ful,

PAT retains -- as an associate fragment -- the values

of the fragment with which it matched, and its mode changes
to VAR. Thus various occurrences of an atom with the PAV
mode cause a comparison with the same fragment.

In recursive definitions, PAV retains the value

of the largest fragment; for example, if it defined
EVEN) PAV {{*¥OR¥ () (== == EVEN))) and used ,the pattern
A EVEN B) to compare with expression (A 1 2 3 % 5 6 B),

the

result will be EVEN VAR 1 2 3 4 5 6, even if the

fragments 1 2 3 4, t 2 and empty matched with EVEN.

4.

the

5.

IMPLEMENTATION

The part of the function resemble* that manipulates
fragments in the PAV mode is

LLEQ -(CAR Y) (OUOTE PAV)) ((LAMBDA (NOM K& K6) (REDUCT IRESEMBLEY

(CONS {LIST (GUOTE SANDS} K& Ké)

{CONS (QUOTE =BOR=)

¢COR X)) }(CONS NOM [CONS
(OUOTE PAT) (CONS Kg (CONS Ka (CONS (QUOTE UAR) (CONS (LIST)
(CONS K6 (CONS (QUOTE PAT) (CONS (CADR Y) (ENTER (LIST NOM
1GUOTE PAT) 1LIST (LIST (QUOTE SANDS) Kk K6I¥Y L) 331 41) 43}
€ Y
(LIST (CAR X3) ansr [ENCOL (CAR X3 (GUOTE (2°7 A B 6 5113
(LIST (ENCOL (CAR X) (QUOTE (2 4 J N 65)) 1))}

DESCRIPTION

PAV means variable pattern.

3-40

[image: image111.png]3-3 ENCOL, REP, FRAGMENTS 3-3

If we compare (XXX a b ...) with B = (eq ey ...), the
process is the following:

a. We execute the function
RESEMBLE® {(SANDS K4 K6) =30R= & b .4.)
(NOM PAT X6 X4 UAR (§ X6 PAT SOCIO . , . NOM PAT (($ANDS X4 K623 -»0)
E
xx
EE

b. It similarity was found above, REDUCE eliminates Kb
and X6 and changes to NOM -- or better, to its partner --
s0 that there remains (XXX) VAR (matched value).

The =BOR= will eliminate the first cycle of L while
the fragment (AND K4 X6) is compared and similarity is
found; consequently, the cycle NOM PAT Ké is temporary
‘and only valid within (AND K4 K6). K4 and K6 are two
gensym atoms produced by ENCOL.

6. TUNCTIONS USED

REDUCE - (page 3-21, original), ENTER (page 3-18,
original), ENCOL (described below).

{(ENCOL X L) X atom, L list

FUNCTION. Produces a gensym (an atom that had not occurred
before), makihg a reintegrate of X and list L; for example, if

X = ARBOL
L (BERZ A), then (ENCOL X L) = ARBOLBERZA

L must be a list whose elements are atoms,

un

DEFINITION. The definitions of ENCOL, DISINTEGRATE and
DISINTEGRATE* are:

(DISINTEGRATE (LAMBDA (X} (COND ((DISSET X3 (DISINTEGRATE® {DISINT))

{DISINTEGRATE® (L&MADA (X} {IF (NULL X) X (CONS X (DISINTEGRATE®
{DISINT 111 1)) |
(ENCOL (LAMADA (X L} (REINTEGRATE (APPEND (DISINTEGRATE X} L1y ')}

© REP MODE, fragments L= (... (XXX) REP SOCIO ...)
XXX is an atom which appears in
L as a singlet under the REP
mode.

3-b1

[image: image112.png]3-3 REP, DISMI 3-3

The partner may be of the form N
or (PATR N)

where N is a number and PATR

a pattern,

2., PROPERTIES
An atom in the REP mode is equivalent to a pattern-
tragment formed by N PATR patterns; if the partner is of

the lorm N, it is then equivalent ot a pattern-fragment
formed by N ==. v

3. EXAMPLES

X = (NAVA) L= ((N) REP ((== B) 3)) will match
with E = ((A B) (R B) (G B) AV A) but not with
E(A B} (R B) (G Bg (U B) AV A) nor with
(A BRBGBATVA).

4, IMPLEMENTATION

The part of resemble* which manipulates the REP
mode is
{(EQ (CAR Y) (OQ'OTE REP)I (COND (INUM LCADR Y)) (DISML (CADR Yy €13
({ATOM (CADR Y} (DISML I{DEC (CANR Y}) F))
L(AND) (RESEMBLE% (APPEND (COND t(RUM {CADADR Y1) {REP

(CADADR Y11) ({ATOM (CADACR Y)) (REP (DEC {CARADR Y313)
C{CONVERTERROR 3 0} (DEC (OUOTE 131113 (CDR X3y L E XX EENINY

5. DESCRIPTION

The N to which reference reference was made in 1.
and 2. can be a numeral or a "whole" atom (formed by
digits); assumably, this distinction makes no sense on
the Q-32.

REP does not retain the value of the matched
fragment. In this regard, it is like PAT.

Example: X = (A NNN), ((NNN) RE? 3) = L, B = (ARBOLE),
then (RESEMBLE X L E) = ({NN¥) REP 5), but with
E=(ARBOLES) will yield F.

6. FUNCTIONS USED

DISMI, REP (given in detail below).

(DISMI R E) 1. R numeral
E list

3-h2

[image: image113.png]3-3 REP, CNT, PRAGMENTS 3-3

2. Semipredicate-FUNCTION

Remove from E as many elements as indicated by R, and
then apply resemble® to (cdr X) with the shortened E that
resiained, It will give a false answer if E is empty and R has
not reached zero.

3. DEFINITION

The definition of DISMI is

(OISMI (LAMADA { R E) ICOND ((ZER R) {RESEMALE® (CDR X) L £ XX EEN
C(NULL E3 € ORI} {{AND) (DISMI (DECR R) (CDR E})} 13

{REP N) 1. N numeral

Free variables:
Y comnected to (ASSSOC* X L) =
REP SOCIO)

2. T[UNCTTION

Produces a list of as many elements as indicated by N
(equal to SOCIO).

3. DEFINITION

The definition of REP is

(REP (LAMBDA (N) (IF (ZER N) (LIST) (CONS (CAADR Y) (REP
(DECR N))))

© CNT MODE, fragments 1. L = ((XXX) ONT SOCIO ...)
XXX is an atom found in L as
a singlet under the CNT
(count) mode.
The partner is a list formed
by two numerals.

2, PROPERTIES

An atom under the CNT mode represents a fragment
of undetermined final length but equal or greater than that
indicated by its SOCIO [partner]. (Note: OCNT is prdocessed
as a 1list of two numerals; the second numeral is that
which indicates the length of the fragment at that moment;
vhe [irst, the number of elements it must compare with).
If the programer desires a fragment with the least number
of elements, it is only necessary to make (TTT) CXT 2,
since ITLZM transforms the previous cycle to the proper
internal notation. -

3-43

[image: image114.png]3-3 DISMIN 3-3

3.7 IMPLEMENTATION

The part of resemble* that deals with Cfragments
in the CNT mode is

€4EQ (CAR Y) FOUOTE CNT)) ((LAMADA (Z) (CONn {{ATOM {CAPR 21}
(COND HINULL E) {OR}) {(NULL (CAR Z)) (OR})
(LAND) (RESEMALE® X (ENTER (LIST (LIST (CAR X)) (OUOTE CNT °
(L1ST (DEC (QUOTE 13) (INCR (CADADR Y3)i} L} (CAR Z3 XX FE

31)} C(4AND} (CADR Z)) 33 (DISMIN {CAADR Y) E£3))

4. DESCRIPTION

DISMIN changes from CNT to REP in order to match;
if this comparison is successful, the length of the
{ragment is accepted; il not, it is increased by 1 and
one returns to CNT.

‘ Note: actually, the change is not made to REP, but
to REC; both modes are very similar, differing only in
that REC produces the output REPLACE, i.e. it changes to
the VAR mode, and REP does not.

CNT, 4if it found similarity, is transformed (through
the internal REC mode) to the VAR mode, but XXX changes
in the dictionary from singlet to atom; furthermore,
EDIT -- before it is used by REPLACE -- transforms the
list of two numerals to the atom corresponding to the
numeral that indicates the length of the fragment with
which it matched.

If an atom in the CNT mode appears several times
in a pattern, then in the corresponding places of ex-
pression E the fragments with which it matched must have
the same length, although they could supposedly consist
of different elements.

On the Q-32, due to the confusion between atom
and numeral, the description of DISMIN is simplified.

6. TUNCTIONS USED

ENTER (page 3-18, original), DISMIN (described below).

(DISMIN R E) 1. R, E lists
IFree variables
Y -connected to (ASSSOC* X L) =
’ (CNT $0CIO)
X L XX EE - connected in
resemble¥

-

5-kb

[image: image115.png]3-3 *NOT*,, #OR* 3-3

2. ' PUNCTION.

The value of DISMIN is a list of E and the value of
resemble* with the CNT mode changed to REC; see also CNT mode
on the previous page.

3. DEFINITION.
The derinition of DISMIN is

(DISMIN (LAMADA (R €) (COND L(ZER R) (LIST £ {RESEMALE® (COR Xj (ENTER
(LIST (LIST (CAR X1) (GUOTE REC) (CADADR Y1) L) £'RX.EE)))
CONULL E) (LIST E (OR})}
(1AND} (DISMIN (OFCR R} [CDR E1)) 113

On the Q-32 it is

(D1sMIn (LAMEDA (R E)
{cono ((2emce g)
(LisT & (RESEMBLER (COR'X)
¢ (ENTER {(LIST {LiST (CAR x})}
{Qéore REC) (cApADA v)% L} € Xx zE}))
(oL e) TLEST € NIL)) (T (DismiN (5061 R) (coR €))1)3}

o (*NOT* P1) X = (... (*§0T* P1) ...)
must appear always within
a list, because it represents
a fragment.

2. PROPERTIES

(*NOT* P1) compares with any fragment that does
not compare with the content of P1; P1 is a list whose
content is treated as a pattern.

3. EXAMPLES

(A (*xOT* (B C) D) will compare with (A ¢ BD)
but not with (A B ¢

4. IMPLEMENTATION

The part of resemble* that manipulates *NOT* is

t{E0 (CAAR X) (OUOTE *NOT#)) (IF
fATOM (RESEMBLE® (APPEND [CADAR X) {CDR X)) L £ XX EF))
(RESEMBLE® (CAR XX) L {CAR €E) (CDR XX} (COR EE)} (OR)})

o (KOR* P1 p2 ...) 1. This pattern must appear in
a list, assuming that it
represents a fragment.

[image: image116.png]*OR¥, *AND® 3-3

P1, P2, ... , are lists whose
content will be treated as
a pattern-fragment.

2. PROPERTIES

{*0R* P1 P2 ...) compares with a fragment which
matches with any of the contents of P1, P2, The
comparison is made: first P1, then P2,

3. EXAMPLES

#*0R¥* is mainly used to define recursive fragments;
for example, a lragment of odd length is

(NON) PAT ((¥OR* (==) (== NON)))
Observe that the terminal condition is the first to be
smentioned. With the above definition, X = (A NON B) will
maveh with (A R Y E B), but not with (A R Y B).

(A (#ORX (=== M ===) (=== N ===)) C D) will match
with (A RM E C D) and with (A N C D), but not with
(A B C D).

4. IMPLEMENTATION

The part of resemble* that manipulates *OR% is

T{E0 {CAAR X) (QUOTE ®OR#3) {1F (NULL (CDAR X))} (OR} {ILAMRDA (Y) .
CIF {ATOM Y} (RESEMBLE* (CONS {CONS (CAAR X} (CADAR X)) (CDR X1}
L € XX EE) Y)) (RESEMBLE® (APPEND (CADAR X) {COR X))} L € XX €£3)1)

5. SCRIPTION
a. If it is (*ORX), the result is F.

b. We make an APPEND of P1 and (CDR X) and compare
it with E; if it matches, this comparison is accepted and
the variables comnnected in it.

¢. Otherwise, P1 is eliminated, and the process is
repeated.

(*AND* P1 P2 ...) 1. This pattern must appear in a
list, assuming that it repre-
sents a fragment.)

P1, P2, ... are lists whose
content is treated as a
pattern-fragment.

3-46

[image: image117.png]$ANDS

2. ' PROPERTIES

w
i
W

X of the form (4ass {*AND* (PPP) (70Q) ...} ¥¥¥) is equivalent to

one of the foxrm (sAND= (335PPPY9T) (a22QQQYYY) ...)

sty to match with X, E must have fragments that match with
the content of P1, that of P2, etc. Nevertheless, it is
not required that the same fragment that matched with the
content of P1 matches with that of P2, etc. The AND,
which is "stronger," requires that it be the same.

3. EXAMPLES

(#*AND¥*) is equivalent to
any fragment. X = (A (*AND* (=

B ===) (XXX)

it will match with

) c),

L = ((XXX) UAR ()) asks for a fragment which has B as an

element and retains it under XXX; for example,
E=(ANTEBLOC), then
(RESEMBLE X L E) = ({(XXX) VAR (N TE B L 0))

4. IMPLEMENTATION

if

The part of RESEMBLE* that deals with *AND¥ is

S(EQG (CAAR X] (QUOTE #AND*)) (COND .
€(NULL (CDAR X3} {RESEMBLE® {CONS (QUOTE =am) iCDR X3} L
L{AND} (RESEMBLE® (APPEND (CADAR X) (CDR X}} L € {CONS

€ XX EEJ}

CCONS (CONS (CAAR X) fCDDAR X33 (CDR X1} XX3 (CONS E.EE}I1Y)

(AND P1 P2 ...) 1. This pattern must appear in a
1list, since it represents a

fragment.

P1, P2, ... are lists whose
content is treated as a

patiern-~-fragment.

2. PROPERTIES

(8AND$ P1 P2 ...) will match with a fragment of
the E expression if this samc fragment compares simule~
taneously with the content of Pt and of P2 and of Pr3, etc.
In contrast with *AND¥, it is required that the fragment
which compares with P71 be the same as that which compares

with P2.

3. EXAMPLES

X = (=== A (AND (EVEN) (XXX)) B ===
L = ((xxX) UAR () (EVEN) PAT ((*ORx ()
allows us to detect a fragment of even length

between A and B, and to have this information
-

3-L7

) with

(== == BVEN))))
located

under XXX;

[image: image118.png](3a

2.

3.

SANDY 3-3

for example, compared with :
“=(12A163B12AA]23B71 2) the result will be
(RESEMBLE X L E) = ((XXX) VAR (A 1 2 3) {BVEN) PAT ((*OR*

A () (== == BVEN)))
Meanwhile, if we use ¥AND* to compare it with the same
cxpnession, the result will be

({xxx) VAR (1 6 3) (EVEN) PAT ((*OR* () (== == EVEN))))
since it would compare the {ollowing patterns with E
§ A EVEN B = and
= A XXX B ===).

A result equivalent to the first example will be
obtained if, instead of (AND ...) we only use EVEN,
thus: X = (=== A EVEN B ===), but defining EVEN in the
PAV mode.

4. IMPLEMENTATION

The part of resemble* that manipulates SANDS is
((B@ (CAAR X) (QUOTE $ANDS$)) ($ANDS (LIST) E))

6. 'FUNCTIONS USED

AND (described below).

XD§ A B) 1., A and B lists; of a form so
that (APPEND A B) is always
E.
Free variables:
X L XX EE - connected to
resemble¥
Semipredicate-FUNCTION

SANDS operates as follows:

It compares (=AND= P1 P2 ...) with A, and (CDR X) with B.
I this comparison is successful, it is accepted.
Otherwise, it dncreases the final value of A by the first
clement of BB which thus becomes reduced, and the part a. is
repeated. A false answer results if B terminates (under b))
and a. has not found any similarity. In this way, it is
jusured that the same fragment that matches P1 is the same
as that with P2, etc. [this fragment is the content of A]J.

DEFINITION

The definition of AND is

3-48

[image: image119.png]veh-€

INTERNAL

MANTPULATION

or

MODES IV

RESEMBLE

+ S e
I3}
(o) ENFRADA £N EL PROIGPAMA
MODOS | . FUENTE (como ol proara PPOCE SO SALIDA PRODUCIDA PP FORHA EN QF SOM USADOS
magor los oscride) 7 FESEMALE POR RIPLATE
< i)
VAR X VAR EXPRESION X VAR EXPRESION X VAR EXPFESION X EXPR EXPRES 10
EH RS [Urga X uke 1 tavorads
1) |
PAT X AT S0c 10 X PAT SOCI0 X PAT 50C(10 tgnorads
PAY X PAV 50CIO Ki, ¥ ~vdase modo
L i PAT X PAT Luan b X VAR EXPRESION X EXPR EXPFES 10N
o oATRY @3]
su8 X SUB PATROM X_SUR PATRON X S PATFON Ignorada
X $EO (PAT , ,)
i ¢
£¢ faternos KD (PATRON A Ag,a) X SEO (PATRON A) Ay () X EXPR (A Ay 4ii)
st [PS5y PATE
MSU X MSU PATR (x U A AA X 15y PATR Ianarada
(XIS TRE A A, 15
Hs$ “1atorno= X HSS (PATI A\ Ayuyd | X BSS (PATE A Apul) XEXPR (A Ay 0)
5T X STL At ° X.STL At X STL AF Tgnorada
76 X ST6 At X $TG At X STG At Lanorada
S = e — .

modes

associated

with expressions

Legend: (a)
them); (c) Process;
by REPLACE;
(3) Internal

Modes; (b) Tnputs in the source program (how the programer writes
(a) output produced by RESEMBLE; (e) Form in which they are used
(£) X VAR expression; (g) X PAT PARTNER; (h). Unknown; (i) X SUB pattern;

[image: image120.png]agy-¢

INTERNAL MANTPULATTON OF MODES

IN RESEMBLE

ENTPARA EH EL PROG } R : \
M000S | FUFNIE Geero ol prosey ~Ronf 50 SALIDA SPODUC 1A AOR Foe £l F SoN
rador los escrlbo) FLEFIOL UTALOS PP PEPLACE
@)
PAT (XXX} PAT LISTA o0 PAT LISTA XXX) 2T LISTA lanoeada
- oy ATy | ooy vam £xpesion (X0 EXPP EXPPES 11
” W € 7 s -
AR (XXX} VAR LISTA (X7} VAP Uiath €ra | (XXX VAP Llsta can 0] DPP LISTA
. Ars apuntadores., a3 apuntadores :
uar (XXX) UAP LISTA %) URP L1TA
THIXY VAP TTS%a con [(XXX} UAP LISTA iancrads
dns apuniadores
W ~Intornom ROYYY HAR 11sta_e/2 an.| O0X) VAP 1Tsta ¢/2 o exn
3 VRTTT5 A €77 #54] Apuntadores. 00K} EXPR L ISTA
- NPT p N .
(R0K) FEP (expr 390 1] 0060 REP Coxor Ty O3 {0000 PLP tespr B0 0
rep Pr dtero % Gtern 7 dromo
& o)y pee MTETO | nxyy pER ST ¢ (uxx) pee NOTE0 Tanorada
& Atero & dtomo ¢ dtora
CNT (XXX} CHY ATOHO QO0) CHT (num gy} 506D CT Caum, wm,) Ianorada
TRRKT Irnumz . o ay
REC ~Intecao~ \?(XXX) FEC nureral {XX%} FLC nu~eral XXy EXOP ATONO
< obsarve que RS X0,
m XK -

modces associated with fragments

Legend: Samc as for table on preceding page, plus: (a) (XXX) PAT list;
(b) Expression, number or atom; (c) Sec mode; (d) List with two observers; (e) EXPR
ATOM observe that it Is XXX, not (XXX)

[image: image121.png]3-3 - RECURSIVE PART OF RESEMBLE*, REPLACE 3-4

TERANDS fLaMana (4 @3 €ILA¥ADA () (TF (ATOM) (7e (WL B) 1OR)
(54NN [APPENA A (LIST (CAR 21)}(cR% R)3) €))

(RESFMALES [CONS (CONS (QUOTF wANDw) (CPAR X)) (AR ¥ N
ARy XX SE T Ny e v teons

[«] RECURSIVE PART OF RESEMBLE*,

The patterms described before are the so-called
basic patterns, i.e. those that resemble* recognizes
immediately.

More complex patterns are analyzed by comparing
their CAR with the CAR of E, and their CDR with the CDR
of E. The corresponding code is
((AND)

(RESEMBLE* (CAR X) L (CAR E) (CONS (CDR X) XX) (CONS
E . (CDR E) EE)))

Definitions of ITLZM and CONVERT on the Q-32.

Ty :
(|F'(&I0“O (fau

Tz onne N
o v GTLee (seoee 1)) IDM).

LVERT HLanrna (01 € Al
Larol) By £ Li) wi) Gmz 1)

3-4 DESCRIPTION OF RE P L A C E

(REPLACE D S) 1. D dictionary of the third
cycle or period.
S skeleton to be replaced
or "rilled."

IFree variables:

E expression E, connected to
CONVERT.

LO Initial dictionary, value
of ITLZI; connected in
CONVERT.

3-49

[image: image122.png]W
1
-

REPLACE 5k

L1 "Initial® dictionaxry LO
added to variables =QUOT=,
=EXPR=, =SKEL=, *QUOT*¥,
EXPR, *SKEL*,

L¥ "present” dictionary; in
addition to L1, it contains
the variablecs commectcd by
RESEMBLE on the left side
of the rule.

R Dictionary of sets of rules.
Connected in CONVERT.

Connected variables:

Lo

L1j brings them up to date

L*) conveniently

S connected in =ITER= and
ITER to (CAR S)

N connected in =LTER= and
ITER to a variable.

2. 4perator FUNCTION.

The value of (REPLACE D $) is the skeleton 5, with
certain symbols substituted of lhe dictionary D, and certain
other interpretes! oxr obeyed in a special manner according
to the particular rules of REPLACE and the CONVERT language.

3. DEFINITION

The definition of REPLACE is very broad, hence we
omit it herxre; it is found in Chapter VII; furthermore, we
will go into "detail" below regarding the definition of
REPLACE to understand how its various skeletons are substi-
tuted.

4. DESCRIPTION
REPLACE is a large function, but very simple.
If S is a primitive skeleton, it replaces it conveniently.

If S is a more complex skeleton -- the recursive part --
then it replaces it element by element of the skeleton; this
means it makes a CONS of the result of replacing the CAR with
the result of replacing the CDR. .

The majority of the atoums of $ pass into the result as
themselves without any alteration; this means as quoted material;
only special atoms (those recognized by REPLACE) and those
that appear in the dictionary D connected to a certain mode

are "transformed.”
RS

3-50

[image: image123.png]=it SKELETONS IN REPLACE, =SAME=, =GNSY= 3-4

5. FUNCTIONS USED

The numbers under the name indicate the page in the

original. ,sssoc, PEINTEGPATE, XT, COMPLEMENT, INTERSECTION, UNION, CONC, CAR-
e Y e preva 00 S COMLEY e 305 50

TESIAR, SULCMINUS, PROD, DIVIDE, PEVY, FOPMAT, CONY, ITERA, APPEND, CONVERT,
3013 3w’ iast am Te0n 3w 1ao 3 e 33

ASS30Ce, DISINTEGPATE, SEO, SET, PESET., "ABeS» , LAST
3 e 3 3 Copwa e 36t

SKELETONS IN REPLACE *

[+] =SAMDE=

‘2, PROPERTIES

The value of this skeleton is the expression E of
CONVEERT, In general, when we speak of the value of a
skeleton, we understand the expression or fragment ob-
tained if we substitute this skeleton, i.e. if we sub-
stitute in this skeleton (vy means orf REPLACE and of a
dictionary D).

4. IMPLEMENTATION

The part of REPLACE which replaces the skeleton
=SAME= is

((zQ s (QUOTE =saME=)) E)

5. DESCRIPTION

The value of =SAME= is the expression which matched
with the left side of the rule that contains on its right
side the skeleton =SAME=.

=GNSY=

O 2. PROPERTIES

Its value is,
a. In the CONVERT version for the 709, a new numeral
(starting with the numeral 99) each time it is called.
A numeral is an atom. The numerals are non-printable.
(UNDEGC NO) or (=UDEC= NO) where NO is a numeral will
result in a corresponding, whole numeral, capable of
being printed. N

[image: image124.png]3-4 =GNSY= 3l

L. In the CONVERT version forthe shared time system of the
Q-32, it produces a new atom (not a number) each time
it is substituted.

3. EXAMPLES

(A SKEL (=UDEC= =GNSY=)), S = (A A B A A)
will produce (709) .
REPLACE D $) = (100 101 B 102 103).

i, IMPLEMENTATION

On the Q-32, the part ol REPLACE which substitutes
=GNSY= is
((EQ 5 (QUOTE =GNSY=)) (GENSYM))

‘ On the 709, the implementation is
({Bu 5 (WUOTE =GNSY=)) (SEQ =AB65=))

Note also (page 3-2 of the original) the initiali-
zation made from the value of =AB65= in the definition
of CONVERT.

6. TFUNCTIONS USED.

SEQ (described below), =AB65= (described below).

(sEQ (LAMBDA* (X) (XAR (X (VAL X)) (CIDR X))))

(=AB65= INCR)

5. DESCRIPTION

CONVERT initializes the VALue from =ABGS5= to 99; fur-
thermore, I define the function =AB65= as INCR [i.e. the
runction which assumes the value 7 greater than its argument);
next, each time I see =GNSY=, I apply SEQ to =AB65=; now then,
(SEQ R) is a function to which the definition of R foxr the
VALue of R applies, to produce a mnew VALue; this value of
(sE@ R) is the old VALue of R, but also SEQ is an operator
that computes ~- and stores under R -- its new VALue, accord-
to the same definition of R. In the case of =AB65=, which
initially has the VALue 99, and the definition INCR, when SEQ
is applicd to it, produces 99 as a value (i.e. the old VALue),
and calculates the next sequential value, which turns out to
be 100; it keeps this value in the VALUL cell of —ABG)_
leaving it listed for the next SEQ.

3-52

[image: image125.png]3-4 VALUE CELLS 3-4

‘A more detailed description of SEQ is found below, under
the heading "VALUE CELLS: SEQ, VAL, SET OPERATORS."

The VALue of an atom is the content of its valuc cell;
do not confuse with the value (lower case) of a skeleton,
which is the result of substituting in it dictiomary D.

VALUE CELLS. SEQ, VAL, SET OPERATORS
only in 709 MILISD

1. VALUE CELLS

Lach atom has two cells associated with it, called
valuce cells; here information can be stored associated with
the atom according to different conventions.

The figure shows the internal structure of an atom

in MBLISP., The CAR of the atom -- R in this case -- is a
numeral that tells us of how many words make up its print-
name: the CDR {broken line arrow: - - -) points to a word

whose CAP is the definition of this atom, if it is defined as
a function; the CDR of such a word (dotted region) is an
observexr for a sub-routine which tells us how %0 manipulate
the definition.

Next (i.e. in successive upper menmory positions), we

find the value cells; there are two value cells: the number 1
or nearest, and the number 2 or the farthest. These cells may
have information in their CAR or their CDR {atoms or lists in
the CAR, and lists in the CDR); hence we have or can keep four
expressions in these cells. Tor example, (CAR (QUOTE CAMOTES)) =
the numeral 2, since CAMOTES occupies two words;

CAMOTIs S7Y777, where 7 is the illegal hollerith character 77.

(CADR (QUOTE APPEND)) = (LAMBDA {X'Y) (IF (NULL X) Y
)

i.e., the definition of the append function.

(CAR {INCR (CDR (QUOTE R)))) is the cross-hatched part
of the figure below oxr the one we called the VALue of an
atom,

(CAR (INCR (INCR (CDR (QUOTE R))))) is the CAR of
cell 2 of atom R. .

As we see, these cells are ready to be used; it is a
guestion of defining corresponding functions which keep and
take values from these cells.

[image: image126.png]3-4 SET -l

R'L car <P
Legend: (a) to locations
{remaindex
illegible...]
(b) array elcment
containing atom

/ print-namc
2 & c) size
N H d) value cell 1
f ,l' value cell 2
; J\"/ (e) to definition
of ATOM as a
q:,;‘;’:) br function
- = (f) VALue of atom;
- s e 2 H
: bzl this is tho
C) s e th - CAR of cell 1
flumeem L2 YAloy jf iHwoy a5 of
" A& de U colde 1.

2. THE SET, VAL AND SEQ OPERATORS.

They manipulate with the CAR of the cell 1 of an atom;
this means with the VALue of that atom.

{SET X Y) 1. X expression
Y atom.

2. OPERATOR

Its value is T.
It makes the VALue of Y equal to X. X and Y are evaluated.

3. EXAMPLES

(SET (QUOTE (1 2 3 4 5)) (QUOTE CAMOTES)) will place
under the VALue of CAMOTES list (1 2 3 & 5). .

3b. DEFINITION

The definition of. SET is

3-54

[image: image127.png]3=k VAL 3-1

$SET (LAMADA ¢X'Y) (SAR (PROTECT X) {CIOR ¥1)))
:?z?T:gT(LAMnnAIX)!iLAMlnA(Z)X)(INSFR1 X{SGARLISIYY 1)
THCERT LLAMARA (F X) £SAF F(ODR (DAR (CAR K1, (ONR LCAR X}ILTSTHIIXIINY

PROTECT yrives as a value its argument, but it protects it
from the garbage-collector,

(VAL X) 1. X is an atom, X is not
evaluated,

2. FUNCTION
The value of (VAL X) is the VALue of the atom X. The

value of an atom is the content of the left half of .the value
cell 1.

. camores .
(POTATOES ’ .
2——»[:::33}
¥ otatoe) -

i 2
| CAMorE
\ EArand

" (celin T
[Blcerde 2

Legend: (a) Cell 1; (b) Cell 2.

3. EXAMPLES

If CAMOTES has been initialized as above, then
VAL CAMOTES) = (1 2 3 4 5); note that we should not say
VAL (QUOTE CAMOTES)).

CONCLUSION: (SET X A) gives A the VALue X; (VAL A)
reproduces it.
4., DEFINITION

The definition of VAL is given below. VAL¥* is also
defined, it will evaluate its argument;
(vAL* (QUOTE CAMOTES)) = (VAL CAMOTES).

(VAL (LAMBDA* (X) (CAIDR x);g
(vaL* (LAMBDA (X) (CAIDR X)

Note: The definition of VAL is CAP, INCR, CDR, i.e.
CAIDR.

3-55

[image: image128.png]3-4 SEQUENTIAL VARIABLES, SEQ 3-4

SEQUENTIAL VARIABLES

We would like to have a variable which, whenever it is
consulted, produces a new value in accordance with an arbi-
brary function desired. The idea is, given an initial value
v a variable -- to an atom --, to apply to it a function F
iven by the programer) to produce a new value; the next
valuc will result by applying to.this value the same F, etc.
50 thut:

initial value of R = Ao
then value 1 of R F%Ao)

value 2 of R = F(F{Ao)) = F(value 1)
value 3 of R = F(F(FAo))) = F(value 2) = F(F(value 1))
etc. .
(SEQ X) 1. X is an atom. X is not evaluated.

Furthermore, X must satisly the

following conditions:

a. It must be defined as a
function of a variable.

b. It must be initialized, i.e.
before (SEQ X) a (SET == X)
must have been made.

Note: If an atom is not
initialized, its VALue is the
numeral O0; this means the CAR
of cell 1 [and 2] is the

"nuneral O; the CDR is an empty
list.

2. Operator FUNCTION.

The value of (SEQ X) is the VALue of X; furthermore,
it computes the new VALue of X, applying X [since X is a
function] to the actual VALue of X.

(sEQ X) computes the new VALue and delivers the old.

(SEK X), in turn, computes the new VALue, and delivers
the new.

(VAL X) delivers the present value of X; it does not
¢ompute or change anything.

3. EXAMPLES
I CAMOTES is defined by Cdr, i.e. (CAMOTES CDR) or

(CAMOTES (LAMBDA (z) (CDR z))), and furthermore, it is
initvialized to (1 2 3 4 5), then: . .

3-56

[image: image129.png]3-4 ITER 3-4

(SE0 CAHOTES) = (23 4 5)
{YAL CAMOTES) = (3 4 S)
(VAL CAMOTES) = (3 4 5}
{SEQ CAMOTES) = (3 4 5)
(SEQ CAMOTES) = (4 5)
(SEQ CAMDTES) = (S)

It is thus possible to define sequential variables, i.e. that
take successive values according to a function.

Prescently, the functions SET, VAL and SEQ are primitive
functions in MBLISP.

Note thaut the VALUE CELLS 1 and 2 need not be used
necessarily as described above, through functions SEQ and SEK;
they may use VAL and SET to insert and retrieve data arbi-
trarily; they may define similar functions, since we already
know the relation or placement of the value cells with
respect to thg atom. The definition of SEQ is given on
page 3~51 of the original,

(ITER X) 1. X predicate
) (generally, X is an operator)

2. Operator-PREDICATE.

ITER continues evaluating its argument until it is
T; then the value of ITER is T.

Together with DO, and the VALUE CELLS, ITER is a
poweriul function. See below.

3. EXAMPLES

Let us take as an example the definition of ASSOC, which
searches its first argument among the second, and vields as
a value the next following element. The normal definition of
ASSOC is
(Assoc (LaMBDA (X L) (IF (EQ X (CAR L)) (CADR L) (ASSOC X
(cpDR 1)))))
Using operators, the definition is

(ASSOC (LAMBDA (X L) (COND
CCAND (SET (CONS {LIST) (CONS (LIST) L)) (OUOTE ATY)
{ITER (€0 X {CAR CSEK ATI)) 1) (CADR (VAL AT))) 33

with the additional definition (AT CDDR).

The above definition assumes that X is always found
in X:; doubting this, wc would define AT as

(At {LaMBDA (2) (TF (NULL 2Z) (LIST X X) (CDDR z))))

3-57

[image: image130.png]=4 =BLNK=, =LPAR=, =RPAR=, EXPR

ASSOC operates as follows:

.

© Viiae of AT is mwade L, with () () added in front.

b. ieulates immediately the new VALue CDDR of' L; then
the comparison [EQ X (CAR (SEK AT))); it it is
correct, the CADR of the VALue is taken; il is wrong,
IPER evaluates again its arpument; this means item b. is
repeated. This ASSOC (which detines (AT CDDR)) has the
advantage that it does not consume pushdown list, and is
delined only in terms of primitive Iunctions.
Iter is a primitive function.
© =BLNK=
The value of this skeleton is the BCD "blank"
character (blank space).
=RPAR=
o RF
The value of this skeleton is the BCD character)
(right-hand parenthesis).
QO =LPAR=
The value of this skeleton is the BCD character (
(left-hand parenthesis). The implementation of these
three skeletons is as follows:
((EQ S (QUOTE =BLNK=)) (BLANK))
((EQ S (QUOTE =RPAR=)) (RPAREN))
((EQ 5 (QUOTE =LPAR=)) (LPAREN))
EXAMPLES
{REPLACE (LIST) {QUOTE (»RPARw uRPARw =RPARs uLPARw wLPARw ! .
. ONK) ARw WLPARW “BLANK=)3) «
© EXPR MODE 1.D=(... A EXPR SOCIO ...)

D

A is an atom under the
mode; its partner is
expression, .

2. PROPERTIES
The value of an atom in the EXPR mode is its

.

3-58

[image: image131.png]SKEL 34

sartuer without later replacement; its partner is copied
s quoted material,

3. EXAMPLES

(D = (B EXPR (=SAME= G B)), S = (HA BAN A),
then (REPLACE D S) = (H A (SSAME= G B) A N A).

4. IMPLEMENTATION

The part of replace which manipulates atoms in the
EXPR mode is

((B4 (CAR Y) (QUOTE EXPR)) CADR Y))

5. DBESCRIPTLON

Tn the above code, Y is connected to the value of
(AS$50C $ D) = = (EXPR SOCTO). The definition of asssoc
is given on page 3-16 ol the original.

SKEL MODE 1. D= { ... A SKEL SOCIO ...)
A is an atom under the SKEL
mode; its partner is an
expression.

2. PROPERTIES

An atom in the SKEL mode causes a replacement on
its partner; this means the value of this atom is the value
of its partner.

I repeat, the value of a skeleton is the result
obtained by substituting, according to the replace rules,
in such a skeleton dictionary D.

3. BXAMPLES

D = (B SKEL (c G V) C EXPR CC), S (BOLACDO);

then (REPLACE D s) = ((0C G v) 0L ACCO).

4, IMPLEMENTATION

The value of REPLACE which substitutes atoms under
tiie SKEL mode is

((7q (CAR Y) (QUOTE SKEL)) (’REPLACE D (CADR Y)))

Note that the SKEL mode allows us to make chains of
delinitions which will have the same final value; for
example, A SKEL B B SKEL C C SKEL D E SKEL B.

-

3-59

[image: image132.png]ATOMS NOT IN D, (), =PRNT= 3-4

ATOMs NOT FOUND IN D.

If a skeleton is an atom not defined in the dic-
tlionary, it is replaced by itself; i.e. it remains un-
chanyred.

EMPTY LIST
An empty list is replaced by itself; i.e. it does

not change. Note: an empty list is not replaced by
another empty list, but by the same empty list.

IMPLEMENTATION

The part of replace which takes into account

atoms that do not appear in D is:

((AND s)

where, as in EXPR and SKEL, Y is connected to the value
of (ASSSOC S D).

The‘part of replace that manipulates empty lists is
((NULL S) S)

(=PRNT= S1) 1. S1 skeleton.

2. PROPERTIES
(=PRNT= S1) carries out a replacement in S1, and

also prints on the output tape SYSPOT (A—J) {on the
Q-32, it prints on the TTY] the value of Si.

4. IMPLEMENTATION

As follows:
({Eq@ (CAR S) (QUOTE =PRNT=)) {PRINT* (REPLACE D (CADR S))))
5. OBSERVATIONS

a., Since the numerals are non-printable -- 709 --,
we use PRINT#, which checks the presence of numerals and
converts them into the corresponding atous,

b, This skeleton is used to trace programs with

crrors as well as to learn about intermediate results.
Furthermore, the rule (=PRNT= S$1) is equivalent to Si.

R

3-60

[image: image133.png][«

=DECM=, =UDEC=, =INTG= 3-4

(=DECM= S1) 1. S1, after being replaced, must
be an atom composed of digits.

“. PROPERTIES

The value of (=DECM= S1) is the numeral corresponding
to 51 replaced., In the CONVERT version running in the
@-32 computer, (=DECM= 51) is simply S1, hence =DECM=
may be eliminated.

4. IMPLEMENTATION

The paxt of REPLACE which operates at =DECM= is
((EQ (CAR s) (QUOTE =DECM=)) (DEC (REPLACE D (CADR S))))

(=UDEC= s1) 1. S1 is a skeleton which, after
being replaced, must produce
a numeral,

2. PROPERTIES

The value of (=UDEC= S1) is the atom corresponding
to the numeral S$1 replaced.

4. IMPLEMENTATION

The part of REPLACE which operates at =UDEC= is
((EQ (CAR S) (QUOTE =UDEC=)) (UNDEC (REPLACE D (CADR 5))))

(=INTG= S1 52 ...) 1. 81, 82, ... are skeletons
which, after being replaced,
must be converted into atoms
of a single character, for
example, R, K, *, but not
AB or CARROTE.

2. PROPERTIES
The value of (=INTG= S1 S2 ...) is the atom which

results from "joining" the characters S1, S2, ... ,
replaced.

3. EXAMPLES

D = (AA EXPR A), S = (=INTG= B AA R C AN 7 8 *),
then (REPLACE D S) = BARCA78%.

3-61

[image: image134.png]=QUOT=, =QUOT= 3-4

4, IMPLEMENT..TLON

The part of REPLACE thch is charged with the
production of atoms in this form, with =INTG=, is

({1w (cAR 8) (QUOTE =INTG=)) (RBINTEGRATE (REPLACE D

‘(cor s))))

(=QuoT= S1) 1. S1 skeleton

2. PROPERTIES

Tts value is S71 without any replacement; like
quoted material. Tt is used if it is desired to obtain
at the output atoms such as =SAME=, =UDEC=, etc., which
are recognized and treated specially by REPLACE.

(=QUOT= N1 S1 N2 S2 ... Nm Sm S') i. N1, N2, ... are
names (atcms or
singlets)
s$1, 82, ... are
skeletons.

2. PROPERTIES

Replaced in the last skeleton of the list, S’
or Sm, if S' is omitted. During this replacement the tem-
porary definitions N1 EXPR S1 N2 EXPR 32 ... Nm EXPR Sm
apply.

Nevertheless, if a skeleton exists in S°' =REPT=,
=CONT=, ox its version with *, the "temporary" definitions
will continue in them; this does not apply to =BEGN= or
+BEGN#, which re-initiates systematically the calculations
on the initial dictionary.

4, IMPLEMENTATION

The part of REPLACE which manipulates a list whose
CAR is =QUOT= is

(LFO (CAR S) (OUOTE «QUOT=1) (IF {NULL {CDDR S}
) ICADR S
(ILANADA (L] L*) (REPLACE (XT D (OUOTE EXPR) (CPR s): ILAST 1))
IXT L1 (QUOTE VAR) (CDR S)3 XY L* (OUOTE VAR) (CPR S3) 1))
5. DBESCRIPTION

a. The front part manipulates both forms of the
=QUOT=, that which has only one element: (=QUOT=. $1) and

.

3-62

[image: image135.png]3-4 LAST, XT 3-4

ihat which has many; both signify different transformations;
ror example, {=QUOT= S1) does not substitute in $1.

b. The last skeleton of the list is replaced, but
with the dictionary D increased in Ni EXPR Si, by XT.

c¢. L1 and L* are "brought up to date® by adding
to them Ni VAR Si; so that
I. These "temporary" definitions become effective or
have priority in REPT and CONT, which are those that
use L1 and L*, respectively.
II. In REPT and CONT (mentioned in I), the earlier
definitions are valid even on the left-hand side
or patterns of the rules, since they pass as VAR.

6. FUNCTIONS USED

LAST (described below), XT (described below).

(LAsT L) 1. L list

Gives us the last element of list L.
(LAsT (LaMBDA (L) (IF (NULL (CDR L)) (CAR L) (LAST (CDR L)))))

(XT X M s) 1. X dictionary to which we add

a few cycles
"M atom or singlet. If M is an
atom, we will not make RE-
PLACE from the second ele~
ments of S; otherwise, we
replace before adding to X.
$ dictionary of cycle 2 of

names (atoms or singlets)
and skeletons to be added
to X under the mode indicated
by M.

2. PFUNCTION

(XT X M S) yields as a value dictionary X, to which
have been added cycles of length 3, as follows:

M FORM S FORM FROM THE RESULT FORMS THE VALUE
N1 S1 N2 s2 Nj VAR Sj ... XXX}
N1 S$1 N2 S2 Nj VAR slreplaced cee XXX)
N1 S1 N2 s2 ... «.. Ni EXPR §; .. XXX)
N1 81 N2 52 Nj EXPR slreplaced ve. XXX)
SKiL N1 S1 N2 s2 ... -.. Nj SKEL S5 ... XXX)

3-63

[image: image136.png]B *QUOT* 3l

The dictionary used to obtain the value Sireplaced is the
present D dictionary. In the table above, XXX was the old
content of X.

3. DEFINITION

The definition of XT is

(XT (LAMADA (X M S) (IF [OR (NULL S) (NULL (COR'S)3) X
(CONS (7ZAR 53 {CONS (IF (ATOM M) M (CAR M)) {CONS
CIF (ATOM M3 (CADR $) {REPLACE D (CADR 5))) (XT X M (CDPR $)3113)))

Q (#quor# s1) : 51 skeleton -- is not a fragment --

2. PROPERTIES

The value of (*QUOT* S$1) is the comtent of S1
without replacement.

(*QUOT* N1 S1 N2 82 ... s') 1. N1, N2, ... NOMBRES
’ (names) (atoms or
singlets)
81, 82, ... skeletons.

2. PROPERTIES

Its value ié the content of the expression which
would be produced by =QUOT=, if it were in place of *QUOT*.

Substitute in S$', taking the content of the resulting
value., Furthermore, the Ni's are defined as being
EXPR S$i; the dictionaries L1 and L* are modified, being
enriched with the cycles Ni VAR Si; the Si's remain
without substitution.

A more detailed explanation is found under =QUOT
page 3-61 of the original.

3. EXAMPLES

S8 = (A (*QUOT* (G =SAME= R)) B) produces
(A G =SAME= R B)., If D = éc SKEL GG;,
S= (G (¥QUOT* G JE H ACHE (G A C H)} H 0 G), then
(REPLACE D 8) = (GG JE A C ACHE H 0 GG).

Note that the temporary definitions have precedence;
in this case, within the skeleton (G A C H), G is worth
JE, although outside it is worth GG.

3-64

[image: image137.png]=EXPR= 324

Note that a replacement in the last skeleton located
within the list (*QUOT* ces ; has been made, except if
it is of the form (*QUOT* Sl), in which case no replacoment
is made on Sl.

h. TIMPLEMENTATION

The part of REPLACE which manipulates *QUOT* is

CLEQ (CAAR'S) (QUOTE ®QUOT#)} IAPPEND
(KEPLACE D (CONS (QUOTE mGUOT=} {(CDAR S))} (REPLACE D {COR $)113

Note how first the value of S' is computed, and then an
APPEND of this value is made to (REPLACE D (CDR S)).

(=EXPR= N1 $1 N2 $2 ,.. Ny S S') 1. N1, N2, ... are
names (atoms or
singlets)

' S1, $2, seey S’
are skeletons.

2. PROPERTIES

With the present dictionary D we substitute (evalu—
ate) the skeletons S1, S2, ..., Sk; these values are placed
under the EXPR MODE and the names N1, N2, ..., Nk, respec-
tively, with this enriched dictionary being the one used
to substitute skeleton S' or Sk, if S' is omitted.

The value of (=EXPR= . . . S$') is the result of
that substitution in S'; the value of (*EXPR* . ., . S')
is the content of the previous result; this means, a
ragment.

The definitions Ni EXPR Si are only valid within
S'; nevertheless, if in S' there exist any of the skeletons
=REPT=, #¥REPT*, =CONT= or *CONT¥, the "temporary" defini-
tions will continue in them; this does not apply to
+BBGN#* or =BEGN=, which systematically re-initiates the
calculations on the initial dictionary LO.

These definitions will continue even on the left
side =~- patterns -- of rules-invoked by XrEPTE or ZcoN ,
since they pass onto L1 and L¥ as VAR; on the right side --
skeletons -- of these rules, the definitions continue
as EXPR, since EDIT converts VAR to EXPR.

3. EXAMPLES

3-65 .

[image: image138.png]=EXPR= 3-4

Me (s I= (QX)MN(ZZZ)) 3 Es{CRIATURAS) 3
Re(C)([ereatures]

€ (XXX A YYY A ZZZ) (R (*EXPR® R N (YYY) (XXX YYY) (ENT (uREPT» «SAMEw C2) R}) R))
)

ez (
{ (s== R ==m) SALIDAI) [output 1]
((ase YYY =am) SALIDAZ)
¢ = (SALIDAS XAX Y¥Y 222))
1)

Then, (CONVERT M I E R) = (R ENT (SALIDA3 XXX CRITUR 22ZZ N R)
This result is obtained as follows:

The only rule of C1 matches and yields:
XXX = CR I; YYY = T U R; %42 = S,
then the skeleton is formed: first we place an R; then we
define R as N and (YYY) as (C R I T U R); we substitute
in 5', which i1s the emphasized part of the program; this
'requires placing ENT at the beginning and R (whose value
is N) at the end; furthermore, it requires applying rule
C2 to (CRIATURA S) again.

The tirst rule of C2 fails, since it searches for
an N in (CRI AT URA S). The second rule of C2 fails
because it searches for the fragment C R I T U R, The
third rule matches [== matches with alll, so that the
value of the skeleton is (SALIDA3 XXX C R I T U R 2Z2);
XXX and ZZZ are replaced by themselves, since they are
not connected; YYY is connected to C R I T U R. So that
the value of (=REPT= =SAME= C2) is

SALIDA3 XXX C R I T U R 2ZZ). The value of the skeleton
ENT (=REPT= =SAME= C2) is (ENT (SALIDA3 XXX C R I T U R
732) NY;
a value which passes as a [{ragment to become the final
result {as a fragment becausc it is *EXPR¥, not sEXPR=);
the {inal result has an R as the last element, this R is
worth again R and not N, since it is outside of (¥EXPR* .

4. IMPLEMENTATION

The part of REPLACE which manipulates =EXPR= is

$(EQ {CAR S) [QUOTE =gXPRa)} ((LAMBDA (L1 L®) (REPLACE
(XT D (QUOTE (EXPRI) (COR $)1 (LAST S1))
4XT LY (QUOTE {VAR)) (CDR S)} §XT L® {QUOTE (VAR)) (CDR §)) 1)

The part of REPLACE that manipulates *EXPR¥ is

((EQ (CAAR S) (QUOTE *EXPR®)) (APPEND
REPLACE O (CONS (QUOTE wEXPRe) .iCOAR S))}) (REPWLACE D (CDR $1)))

3-66

[image: image139.png]b

EXPR, =SKEL=, *SKEL* 3-4

FUNCTIONS USED

XT (page 3-62 of the original); LAST (page 3-61
of the original).

(#EXPR* N1 S1 N2 S2 ... S') 1. N1, N2, ... names (atoms
or singlets)
S1, $2, ... skeletons [not
fragments)

Their value is the content (i.e. the fragment) of
the value which produces =EXPR= working on the same list;
see =EXPR=, page 3-63 of the original.

The impliemntation of ¥*EXPR¥ is found on the same
page, above.

(=SKEL= N1 $7 N2 S2 ... Nk Sk S')

(#SKEL* N1 S1 N2 S2 ... Nk Sk §') 1. N1, N2, ..., Nk
. names (atoms or
singlets)
. s1, $2, 111, Sk, S'
skeletons {not
fragments)

2. PROPERTIES

Replaced in the last skeleton of the list, whethexr
$' or Sk, il S' is omitted. During this replacement
operation, the following temporaxry definitions apply:

N1 SKEL S1 N2 SKEL $2 ... Nk SKEL Sk.

hevertheless, if there exists a skeleton in S'
ZREPTE or —COVT_ the "temporary" deflnltlons w1ll con-~
tinue to prevall‘ this does not occur with ~BDGN_, which
systematically re-initiates the calculations on the initial
dictionary.

If it is =SKEL: the value is the result of sub-
stitution on S'; if it is ¥*SKEL¥*, the value of (*SKEL* L..51)
is the content of the substitutiom on S', for which care
must be taken that in this case the value of 5' be a list.

These definitions will prevail only on the rlpht
side -- skeletons -- of rules invoked by EREPTE or ZCONTE
since they become L1 and L* as SKEL. This means, this
connection of variables will not have any effect in the
patterns.

3-67

[image: image140.png]3-4 =RAND= 3-4

3. EXAMPLES

D = (R SKEL RR), $ = (R {*SKEL* R (RAR) (R A D A R})
F R)
will produce as a value (RR RAR A D A RAR F RR).

Note that the "temporary" definitions have prece-
dence.,

4. IMPLEMENTATION

The part of REPLACE which manipulates =SKEL= is

t{EG (CAR S) (QUOTE wSKELw)) {(LAMBDA (L1 L*) {REPLACE
(XT O (OUOTE SKEL) (CDR 5)) (LAST S)))
EXT L1 (QUOTE SKEL) (CHR S3) IXT L® {GUOTE SKEL) (COR SI) 11

The part of REPLACE which manipulates *SKEL* is

{LEQ (CAAR S) (OUOTE ®SKEL®)) (APPEND
~4REPLACE. D {CONS (QUOTE aSKFLe) (CDAR $))) (REPLACE D (COR S}i1}

6. FUNCTIONS USED

XT (page 3-62, original), LAST {page 3-61, original).

@ (=RAND= S1 82) 1. S1, S2, skeletons.

2. PROPERTIES

The value of (=RAND= St $2) is S1 or Sz, substituted,
making a "random" selection among these two skeletons.

The selection is really pseudo-random, in the sense
that if the same CONVERT 2 program is run twice the same
values will be obtained. It used (RANDOM), which is a
primitive function in MBLISP, which is T or I, aleatorily.

Yts principal application consists in the generation
of skeletons which obey a certain law; it is useful in the
generation of skeletons providing a certain probability
to variables (see Chapter V, EXAMPLES).

3. EXAMPLES

S = (=SKEL= TR (=RAND= {=RAND= A B) (=RAND= C TR)))
rives the skeletons A, B and C the probabilities Y3, ¥3,
/3 of occurrence. Based on a similar skeleton is the
pencrator of skeletons which produce a given distribution
of probabilities, described in Chaptexr V of this Thesis.

3-68

[image: image141.png]@
[+

=COMP=, *COMP*, COMPLEMENT 3-4

4. IMPLEMENTATION

The implementation of =RAND= in REPLACE is vexry
simple:
(EQ (CAR S) (QUOTE =RAND=))
(REPLACE D (IF (RANDOM) (CADR S) (CADDR S))))

{(=COMP= S1 S2)

(*coMP* S1 S2) 1. 81, $2 skeletons which after
being substituted are lists --
sets ==-.

2. DPROPERTIES

A set of elements is formed which exist in S1 but
not in S2. The value of (=COMP= ...) is such a set; that
of (*COMP* ...), the content of such a set.

3. EXAMPLES

If D
with
with
with

(c1 ExPR (A B C) (C2 EXPR (C U B 0)), then
=COMP= C1 C2), gREPLACE D s; = EA)
=COMP= C2 C1), (REPLACE D V) = (U O

=COMP= (B (*COMP* (C A M A S) C1) Eg g=COMP= cz2

#HaWl
tonu

. we have (REPLACE D W) = (M S E),
since (*COMP* (C A M A S) C1) =M S
and (=coMP= C2 (P O L I)) = {(C U B)

4. IMPLEMENTATION

The part of REPLACE which manipulates =COMP= is

CLEQ {CAR S} (QUOTE wCOMPw)§ (COMPLEMENT (REPLAC ¥ R
fREPLACE D (CADDR $)113 €.0.4CADR 573

The part of REPLACE which manipulates *COMP¥* is

(EQ (CAAR 5) (QUOTE *COMP*))
(APPEND (COMPLEMENT (REPLACE D (CADAR 5))(REPLACE D (CADDAR $}3)
{REPLACE D (CDR $)))) e .. Correcto,

6. TFUNCTIONS USED

APPEND, COMPLEMENT (described below).

(COMPLEMENT S T) 1. S, T lists --_sets --.

[image: image142.png]3=k —INTS=, *INTS* 3-4

2. FUNCTION
The value of (COMPLEMENT S T) is a list of the elements

in $ and which are simultaneously not in T, which do not
belong to T.

3. DEFINITION
The definition of COMPLEMENT is
(COMPLEMENT (LAMBDA €S T) (COND
({NULL S) 51
t(ELEMENT (CAR S) T3 (COMPLEMENT (CDR S} T3}

(CAND) (CONS (CAR S) (COMPLEMENT {COR S5) TI1)
M

4. NOTES

: In Q-32, since the atom T cannot be used to connect
values, the atom TT was used.

5. TFUNCTIONS USED

ELEMENT (page 3-2%, original).

(=INTS= S1 S2 ... Sn)

[-1+]

(*¥INTS* S1 S2 ... Sn) 1., Si, S2, ..., Sn skeletons
which after replacement
become lists.

2. PROPERTTES

We form the intersection of the sets S$1, S2, ..., Sn;
this means the collection of elements found simultaneously
in all the Sits.

(=INTS= ...) produces as a value such a list or

collection; (*INTS* ,.,.) is substituted by the content
of such a list.

3. EXAMPLES

Ir D = (C1 EXPR (A B C) C2 EXPR (C U B 0) (C3) EXPR

({2 3) (4 2 5)))
then
with

= (B C

= (C B

), which is the
h.

=INTS= C2 ¢2), EREPLACE D sg
(2),
ich are lists

S =
S = (=INTS= C2 €1), (REPLACE D S
if § = (=INTS= €3), (REPLACE D S) =
intersection of (2 3) and of (& 2 5), w
produced by the fragment called C3.

3-70

[image: image143.png]3-4 INTERSECTION 3-4

U= (R (*NTS* (CABALLO) (CALLO) (HALLAB A))),
[horse] [corn] [spoke]

then REPLACE D U) = (R A L L). Note that the result will

contain repeat elements only if all the Sj's have them.

4, IMPLEMENTATION

The part of REPLACE which operates with =INTS= is
((EQ (CAR S) (QUOTE =INTS=)) (INTERSECTION (REPLACE D
(¢DRr $)}))

The part of REPLACE which operates with *INTS* is

((EQ (CAAR S) (QUOTE *INTS*))
(APPEND (INTERSECTION (REPLACE D (CDAR 8})) EREPLACE D
. CDR S))))

‘Note that first we replace (s1 82 ... Sn) and then we
call the INTERSECTION,

6. FUNCTIONS USED

INTERSECTION, APPEND (both described below).

(INTERSECTION L) 1. L = (L1 L2 ... Ln) where each
Li is in turn a list,

2, TFUNCTION

The value of (INTERSECTION L) is the intersection of
L1, L2, ..., i.e. a list of all the elements common to each

element of L.

3. DEFINITION
The definition of INTERSECTION is

{IRTERSECTION (LAMBDA fL) (IF (AULL (CDR L}) (CAR L)
{INTERSECT (CAR L) (INTERSECTION (CDR L)IIHY)

tINTERSECT (LAMBDA (S T¥ (COND
{INULL S} S)
CINULL T T .
{{ELEMERT (CAR S) T) (CONS {CAR S) [INTERSECT (COR S)
{ REMOVE ICAR $) T) Y
C(AND) (INTERSECT (COR S} T1)

N N

5. TFUNCTIONS USED

INTERSECT (described here), ELEMENT (page 3-24 of the
original), REMOVE (page 3-24, original).
-

3-71

[image: image144.png]34 APPEND, =UNON=, ¥UNON¥ 3-4

(APPEND X Y) . 1. X, Y lists

2., FUNCTION

The value of (APPEND X Y) is the list which results
from adding to Y, in the same order and to the left, the
elements of X. If X = (X1 X2 ... Xn), Y = (¥1 Y2 ... Yn),
then (APPEND X Y) = (X 1 X 2 ... Xn Y1 Y2 ... Yn).

3. DEFINITION

In Q-32, APPEND is a machine function. In MBLISP,
its definition is
“CL(APPEND (LAMBDA (X Y) (COND L{ATOM X)(CONVERTERROR 3 11)
t{ATOM Y] (CONVERTERROR 1 1))
L HNULL X)
Yt CINULL Y XD .
. t{AND) { (LABEL APPEND (LAMBDAIL)(IF(NULL LIY {CONS KCAR Ly
(APPEND 1COR LINIDIY X1

4. DESCRIPTION
a, If X or Y are atoms, an error message is sent.
b, If X or Y are null, the result is the other variable.

¢. On the contrary, the LABEL is used to re-define
APPEND as a function of a single. variable L; in this definition,
Y is a free variable.

@ (=UNON= S1 S2 ... Sm)

(*UNON* S1 S2 ... Sm) 1. 81, S2, ... skeletons which
after replacement will produce
sets (lists).

2. PROPERTIES

A UNION of all the elements of St, 52, ..., i.e.
a list containing without repetitions the elements in 351
or in $2, ... is formed {=UNON= ...) and takes this list
as its value, (*UNON* ,..) takes as its value the content
of this list.

(=UNON= S8), where S is a single list, is used to
eliminate from S the repeat elements.

3. EXAMPLES

If D = (C1 EXPR (A B C) C2 EXPR (B C D E)), -then
(REPLACE D (QUOTE (=UNON= C1 C2 (B A C A S)))) =(ABCDES)

3-72

[image: image145.png]3-4 UNION, EXTEND ' 3-4

4. ' IMPLEMENTATION

The part of REPLACE which manipulates =UNON= is
({EQ (CAR s) (QUOTE =UNON=)) (UNION (REPLACE D (CDR S))))

The part of REPLACE which manipulates *UNON* is

((EQ (CAAR S) (QUOTE *UNON*))
(APPEND (UNION (REPLACE D (CDAR $))) (REPLACE D (CDR s)Y))

6. FUNCTIONS USED
UNION (described below).

(UNION L) 1. L = (L1 L2 ... Ln), where Lj

is in turn a list.
.

2, FUNCTION

The value of (UNION L) is the union of L1, L2, ...,
i.e. the elements -~ without repetition -- present in L1 or
in L2 or in L3 or in ...

3. DEFINITION

The definition of UNION is

(UNION (LAMBDA (L) (IF (NULL L) L (EXTEND (CAR L) (UNION
(coR 1))))))

5. FUNCTIONS USED

EXTEND (described below).

(EXTEND 5 T) ° 1. S, T lists

2. FUNCTION

(EXTEND S T) adds to T the elements of S which are not
present in T; it is a binary "union."

3. DEFINITION

The definition of EXTEND is

(EXTEND (LAMBDA (S T) (COND .

tONULL 5 T)
((ELEMENT (CAR S) T3 (EXTEND {CDR S} Th
({AND) (EXTEND (CDR $) (CORS (CAR 5) Ti}) “

"m

3-73

[image: image146.png]3-4 =CONC=, *CONC*, CONC 3-4

4. NOTES

TT was used instead of T in the CONVERT version which
runs on the Q-32.

5. TFUNCTIONS USED

ELEMENT (page 3-24 of the original).

[(=coNC= 51 S2 ... Sn)

(*CoNC* S1 s2 ... Sn) 1. $1, 52, ... skeletons which
after substitution will
produce lists ~-- sets -- as
a value.

2. PROPERTIES

A major set containing -- in this order -- the
clements of St plus those of S2 plus those of S3 plus
those of S3 plus those of ... is formed. Repeat elements

are not eliminated. It is like a multiple of APPEND.

3. EXAMPLES

(*conc* (A BC) (CDE) (EF G H) =
ABCCDEETFGH

4. IMPLEMENTATION

The part of REPLACE which manipulates =CONC= is
((EQ (CAR 5) (QUOTE =CONC=)) (CONC (REPLACE D (CDR s))))

The part of REPLACE which manipulates *CONC¥* is

((EQ (CAARS) (QUOTE *CONC*))
(APPEND (CONC (REPLACE D (CDAR S))) (REPLACE D (CDR 8))))

In the Q~32, CONCA has been used instead of CONC, since
this is a pre-defined form with an arbitrary number of
arguments.

6. FUNCTIONS USED

CONC (whose definition will be given below).

(covc (LaMBpA (L) (IF (NULL L) L (APPEND (CAR L) (CONC
(cor 1))))))

3-74

[image: image147.png]3-4 =CART=, *CART* 3-4

© (=CART= ST s2 ... sn)

Q@ (*cART* S1 52 ... Sn) 1. S1, 82, ... skeletons which
after being substituted will
produce lists -~ sets ~-- as
a value.

2. PROPERTIES

The value of (*CART* ,,.) is the content of the
value which would be produced by (=CART= ...

The value of (=CART= .,.) is a list whose elements
are lists whose first element originates in S1, the
second in $2, etc.; all the combinations are present and
none repeated.

If any S3 is a fragment, then they will be sets

‘to be taken into account in the formation of the caxr-~
tesian product.

3. EXAMPLES

D = (C1 EXPR (A B C) C2 EXPR (1 2) (C3) EXPR ((S T)
((u) (®) (T)))).
If S = {(*CART* C1 C2) NN), then (REPLACE D S) = ((a 1
(A 2) (B1) (B2) (¢ 1) (C2) NN).
If U = (=CART= (*) (X Y 2Z) C2), then
(REPLACE D U) = {((* X 1) (*x 2) (* Y 1) (* Y 2) g* z 1;
*Z2)).
If v = (=CART= G3 (A B)), then (REPLACE D V) = ((S
U) A) (s (u) B) (s (p) A) (s (D) B) (s (T) A) (5 {(T) B)
T (U} A) (T (u) B) (T (D) &) (T (D) B) (T (T) A)
T (T) B)), since the cartesian product of),
(u) (D) (T)) and (4 B) is carried out.

4. IMPLEMENTATION

The part of REPLACE which manipulates =CART= is
((EQ (CAR s) {QUOTE =CART=)) (CARTESIAN (REPLACE D (CDR S))))

The part of REPLACE which manipulates *CART¥* is.

((EQ (CAARS) (QUOTE *CART))
(APPEND (CARTESIAN (REPLACE D (CDAR S))) (REPLACE D
(cor 8))))

5. NOTES

Note that first we substitute thd Si's and then
we call the CARTESIAN.

3-75

[image: image148.png]3-k CARTESIAN, CART, CART* ' 3-4

6. FUNCTIONS USED

CARTESIAN (described below).

(CARTESIAN L) 1. L = (11 L2 ... Ln) where each
Lj is 2 list among which
the cartesian product is
carried out,

2. TFUNCTION

The value of (CARTESIAN L) is the cartesian product
among the elements of L, which are assumed to be lists.

3. DEFINITION

The definitions of CARTESIAN, CART and CART* are the
following:

(CARTESIAN (LAMBDA fL) (IF (NULL L) {LIST L) {CART {CAR l) I' v
{CARTESTAN {COR L1331)) . . o

(CART (LAMBOA 15 T3 (IF TKULL) § (CARTS T311) T

{CART® (LAMPDA (T#)} (IF (NULL T®) (CART (COR $} .T)
({CONS (CONS (CAR 5) (CAR T®)} {(CART* (COR T#)1)I1)

4. DESCRIPTION

CARTESIAN applies CART to the first element of L and

to CARTESIAN of its CDR. Assume that

((A1 A2 A3) (B1 B2 B3 B4) (Ct1 €2)); then assuming as
already formed (CARTESIAN (CDR L)) = ((B1 ¢1) (B1 c2) (Bz C1)
(B2 ¢2) (B3 c1) (B3 ¢2) (B4 C1) B4 cz)) to form the complete
cartesian product, we must add in front .of each element first
Al; then A2 and them A3, We must assume that this is what
CART does.

We could have defined CART as
(CART (LYBDA (S T) (IF (ML §) S
(APPEND (CART* (CAR S) T)

(CART (CDR 5) T)))))
where CART* adds (CAR S) to each element of T, and CART makes
a recursion on S, so as to comprise the action of CART* w:Lth:Ln
all its elements. It is like a MAPCAR [MAPAPPEND].

Then, the definition of CART* would be

(CART* (LAMBDA (E T*) (IF-(NULL T%) T*
(CONS (CONS E (CAR T*))
(CART* E (COR T*))))))

3-76

[image: image149.png]3-4 =ITER=, *ITER¥ 3-4

CART* increases by E the elements of T*; (CART S T) applies
the "incrementing" action of CART¥ to T foxr each element of S,
making an APPEND of the results.

Compare now the previous definitions with those given
in 3. (previous page) and observe how APPEND is eliminated.

In general, when the code says
(APPEND (function 1 ...) (function 2 .,.)) and function 1 and
function 2 do not call upon each other, being recursive only
upon themselves, then it is possible to eliminate APPEND,
placing in the branch which has the terminal condition for
function 1 the call for function 2, and in the terminal branch
for function 2 the re~entry into function 1 with modified
arguments. Observe and reflect.

The terminal condition in CARTESIAN,
IF.(NUL L) (LIsT L) P is correct, as can be derived from
CARTESIAN (QUOTE (A B C))) = (A B C).

5., FUNCTIONS USED

CART, CART* (described here, item 3. on the previous
page).

© (=ITER= N1 S1 N2 S2 ... Nk Sk S')

@ (#ITER* N1 S1 N2 $2 ... Nk Sk S') 1. N1, N2, ..., Nk
skeletons which upon
being substituted
will produce an atom
which will be our
iteration variable.

» S1, S2, ..., Sk
skeletons which upon
being substituted
will produce a list
(a set), over which
the corresponding
variable produced by
Ni will have its
dominion.

If the value of
any Si is not a list,
as expected, but a
numeral, say N, then
it is equivalent to
holding that the value
of .S was not N but
the set formed by the
1, 2, «.., to Nj

3-77

[image: image150.png]=ITER=, *ITER* 3-4

i.e., in this case,
the variable produced
by the corresponding
Nji will assume the
values (numerals)

1, 2, ... through N.

+ S* is a skeleton.
2, PROPERTIES

(*ITER* ...) produces the content of what is
produced by (=ITER= ...). The value of (=ITER= ...) is
a list whose elements are formed by substituting S',
with the dictiomary D enriched by the cycles
M1 EXPR ¢1 M2 EXPR ¢2 ... Mk EXPR ¢k
where M; are atoms (called variables of iteration), atoms
which resulted from substituting in the corresponding Nj's,
‘and the 0j's are elements of Sjireplaced- Fach ¢ has all
its values (of the set Si) taken, without omitting nor
repeating combinations, and the value of (=ITER= oo} ds
a list of the results of substituting S' in this form.

3. EXAMPLES

(=ITBR= A (1 2 3) B (UV) (R4 B)) = ((R1U)
R1V)(R2U) (R2V) (R3TU) (R3V)).

The variables connected by =ITER= have preference
over those already existing in the dictionary; for example,
in the previous case, D was assumed empty (or at least
it would not interfere with A, B, R); the same result
would have been obtained if D had been (A EXPR GRAGRA),
since within (R A B), A was connected to 1, 2 oxr 3.

D = (N SKEL (=UDEC= J) V EXPR J),
s = (A (*ITER* V (=DECM= 10) K) AR), then
(REPLACE D S) = (A 12 3 4 56 7 8 9 10 AR), since J,
which is the value of V, assumes the values numerall,
numeral?, ... numerall®, and N converts it into an atom.

LYY

(eFpit REPLACT CIf afR 11 2 3) § E4FR & @ areiitin s &) B SRl
O} fmiTEAs A B C i ThHleess L
(6Cre . e) ‘
[} $ Noxu123)1aﬂo)Ulza)ys&onﬁizslzﬁhpi
1 \‘1223;)‘2Aa NO) (11 23 2EW0 1 233 AR q) -,“l'z 3 3 8N

0) 41172 3), 3 €N Ol)ee

(appLY AEPLACE K68 'EAPR 1172 33 C KPR N'O EXPR (A B) € SKEL (0 A N-C
01) (=1TERe A B {elTERs C D EV3))e . B

t6Che

3-78

[image: image151.png]=ITER=, *ITER* 3-4

teeey 41 1 A NO) (11 23y 1 y ot
N 0y l?lzil?BNOY 172 31,2 8 N OY
8N ({122 36 N0},

(4POLY REPLACE ((8 EXPR (1 2 3) ¢ EXPR N D EXPR ¢ Skgk o]
D) (L*ITER® A B CQ €})))es . °E .ABEl € ske panc
(ti1 2 90 1 A N Oy (41’.3173»0) (11 23 1 ENO) ((lz.BY?ANG
) 42230 2B NO) (01274 2 g NO) (i1 2721 3ANO (X 18N
0) (1231 3ENKO) b 2 > 173 ee

CAPPLY REPLACE ((B €XPR (1.2 3) C EXPR N D EXPR {A B £) € SKEL (B AN C
D)) {wITFRa A © (*[TFR% € N F)1)), N

(63

Gt 291 1 ANO) (41 230 18N0) (11 23) 1ENO) 61 23) 2AN0
1461231 268 NM0) t(1 23 2N 0) (i1 23 3AN0 ti1 223 38K
0) (11 2 3) 3 E N O}lea i N

LSTOP) esene

Note: Although S' is a skeleton, £1TERE will produce
correct results if a fragment is involved; for example,

D = ((sss) SKEL (1 2 X)), and if § = (=ITER= K (A B C) SSS),
it will produce as a value {1 2 A 1 2 B 1 2 C); this may
change and may not be correct for future implementations

of CONVERT; nevertheless, it appears to be a useful
property of 21TERY which is worthwhile preserving.

4. IMPLEMENTATION

The part of REPLACE which is in charge of =ITER= is

(LEQ ACAR $) {OUOTE »ITERe)} (IF (NULL (CDDR S1} (REPLACE O (COR S)i
CCLAMBDA LN TITERA(REPLACE DICADDR 5133) (REPLACE DICADR 5113 1)

The .part of REPLACE which is in charge of *ITER¥ is

(0 (CAAR S) (QUOTE *ITER®3) (TF (NULL (CODAR S)) (APPEND {REPLACE O
ICDAR S)) (REPLACE D [COR 51)) IAPPEND {(LAMBDA{Z1 S N}UJTERA 21}
) (REPLACE D (CADDAR S)) [CAR 5) (REPLACE D (CADAR $1)
{REPLACE D (COR S))))}

5. DESCRIPTION

a. (=ITER= S') is converted into (S'replaced): 28
it should be.

b. (*ITER* N1 S1 N2 S2 ... S') is converted to
(itera {replace (N2 s2 ... S')), where ITERA makes the

conversion of the variable N, which is N{ replaced;-on
the value of S1.

6. FUNCTIONS USED

ITERA (described below).

3-79

[image: image152.png]3-4 ITERA, ITERAN, #CONT=, ¥*CONT* ° 3-4
(ITERA C) 1. € is a 1list -- a set -- or

C is a numeral.
2., TFUNCTION

a. If C is a numeral, ITERA calls upon ITERAN,

b. If C is a set, we calculate
REPLACE (N EXPR (CAR C) DDD) (=ITER= N2 S2 ,.. S')

and ITERA is repeated upon (CDR C), so that N is connected
undexr the EXPR mode, to each one of the elements of C. We
therefore have an APPEND.

3.

N is (REPLACE D (CADR S)); i.e. the value of N1.

DEFINITION

The definition of ITERA is

$ITERA ILAMADA (C) (IF (NUM C) (ITERAN IDEC (OUOTE 1143}
(IF (NULL C) € (APPEND (REPLACE (CONS N (CONS IGUOTE EXPR) (CONS
(CAR C) DI} (CONS (QUOTE wITER=) (CDODR S))) (ITERA (CDR €}) 133)
The definition of ITERAN is

LITERAN (LAMBDA (M) (IF {SL C M) (LIST) (APPEND (REPLACE IC‘:’NS N

_{CONS (QUOTE £XPR) (CONS M D))} (CONS {QUOTE =ITERa} (LDDDR S31} °

{ITERAN CINCR M})))4

In ITERAN, C is the upper portion of the variable, i.e. it
varies from 1 through C. If M is strictly greater than C
(i.e. C is strictly less than M), then we "cut" the APPEND
with a (list).

[

(=CONT= S1 N1 C1 N2 C2 ...)

(*CONT* St N1 C1 N2 C2 ...) 1. S1 skeleton
. N1, N2, ... names (atoms)
of the set of rules
c1y; €2, ...

2, PROPERTIES

The value of (*CONT¥* ...) is the content of what
(=CONT= ...) would produce. With the present dictionary D,
we substitute in the skeleton S1 to form a new expression E;
to this expression we apply the set of rules whose name
is N1; i.e. we apply C1.

In addition to defining N1 as the set C1, the
skeleton may contain the set of -- additional -- rules
€2, €3, ..., with its corresponding names N2, N3, ... in
the form of a dictionary of cycle 2.

3-80

[image: image153.png]ABBREVIATED FORMS OF ZcoNTE 3-4

The value of the skeleton (=CONT= S1 N1 €1 N2 c2 ...)
is the result of applying the rules of C1 to the new
expression E formed by $1 replaced,

During the conversion C1 carries out on this ex-
pression, all the variables presently comnected are
retained, i.e. those previously defined in M of CONVERT
plus those defined by RESEMBLE toward the left side of
the rule plus those defined by XqQuorZ, 2EXPRE, and %sKELY;
ZCONTZ uses dictionary L*,

Let us recapitulate: the variables defined in M
will have an effect on patterns and skeletons of C1, on
patterns only or on skeletons only according to the mode
by which they were originally defined; for example,

A VAR BB will be a pattern; later on, EDIT will convert
this to A EXPR BB, for which reason its influence extends
to both sides of the rule; in turn, C EXPR KJIL only
affects -- is valid only ~- in SKELETONS, since

B PAT (= ===) will only be used when comparing patterns.
The description of each mode contains information about the
final destination of its partner; furthermore, on page
3-47A of the original, a table of interconversion of

modes is shown. Please consult.

The vaviables connected by the similarity toward
the left side of the rule pass on to dictionary D of
REPLACE (hence their effect on skeletons), as EXPR,
depending on the details of the mode by which they were
connected.

The variables connected by 2QUOTE and 2EXPRE affect

both sides of the rule -~ patterns and skeletons ~-- since
they pass onto to L* under the VAR mode.

The variables connected by XSKELZ onily affect the
skeletons of the C1 rules, since they pass onto L as SKEL.

L* is the dictiomary which RESEMBLE will use for
a comparison of the new E with the patterns of the C1 rules.

ABBREVIATED FORMS

(%conT s1 N1)

indicates that we will transform the (substituted)

skeleton S1 by a set of rules called N1, which has already
Yeen mentioned ~-- defined -- earlier.

[image: image154.png]-4 ABBREVIATED FORMS OF ZCONTE 3-4

W

(£coxtE s51)

indicates that we will transform the (substituted)
skeleton S1 by means of the present set of rules, i.e. the
set which contains this skeleton (ZCONTZ S1).

Both are abbreviated forms of the more general form
given on ﬁhe previous page. As a convenient notation, we may
consider =CONT§, whose obvious meaning is =CONT= and/or *CONT*.

3. EXAMPLES

M= (), T=(x(xxx)) .
R = (C1 (

((x x000) (=coNT= (xxx)))

—

Applied to E = ((N) (N) {(¥) (T) (U) R), the result will be:
(CONVERT M T E R} = ((N) (N) (T) (U) R), since the only rule
of €1, the first time it is applied, gives to X a value (),
und to XXX the value (N) (N) (T) (U) R; next =CONT= retains
these values and applies the pattern (X XXX), i.e.

((¥) (v) (¥) (T) (U) R), to (3XX), i.e. to ((N) (N} (T) (U) R),
hence the rule fails (this rule requires that a list be egual
to its CDR), yielding the expression E, i.e. (XXX), as a value.

If instead of =CONT= we had used =REPT=, which does
not maintain connected values, we would have obtained () as a
value, since each time the rule is applied, X would be free
{UAR modez again, hence the pattern (X XXX) would fail only
when E = .

With this same example, if R were

R = (C1{
€ (X XXX} (wJe (*CONT* (X} €2 (
{ (wme X «wa) (DOSVECES))
((an e ome) (XXO))
33 =)) :

The first rule of C2 says: if E contains (N), write
(DOSVECES) [two times].

The second rule of C2: if E contains three or more
elements, write ((N) (N) (T) (U) R); note how X and XXX regained
the value (connected in C1) on the left side of the C2 rules.
The result of applying CONVERT with this new R is
(=3= DOSVICES =J=).

If the previous R is applied to E = (A.-B C D), there
would resuls (=J= B € D =J=); applied to (A B), the result
would be (=J= B ..

[image: image155.png]3-4 FORMAT 3-4

4. IMPLEMENTATION

The part of REPLACE which manipulates =CONT= is
((EQ (CAR 8) (QUOTE =CONT=)) (FORMAT D L* S))

The part of REPLACE which manipulates *CONT* is

((EQ (CAAR S) (QUOTE *CONT*))
(APPEND (FORMAT D L* (CAR S)) (REPLACE D (CDR S))))

6. TFUNCTIONS USED

FORMAT (described below), APPEND (page 3-67, originall).

(FORMAT D H S) 1, H dictionary, with which the
calculations proceed.

‘ D dictionary D or REPLACE,
with which we will substitute
skeleton S1.

S skeleton of the form
(=CONT= ...), (*REPT* ,..),
etc, Useful to determine
what type of form is being
used (e.g., abbreviated
form).

2. Operator FUNCTION.

FORMAT applies CONVERT to skeleton S1 replaced. The
dictionary H is L1 if =REPT= oxr *REPT¥ is involved, or L* if
=CONT= oxr *CONT* are involved.

a. I S = (XREPTZ S1) or (ECONTZ S1), then CONVERT* applies
with the set T. This is a free variable, precisely connected
in CONVERT#*; it is the set being used, which contains the
rule which contains that skeleton.

b, If S = (XREPTZ S1 N1) or (ZcoNTZ S1 N1), then search for Ni
in Q, which is a dictionary of a set of rules, applying
CONVERT* with the set that has the number N1,

Q is the original dictionary R of sets, increased
perhaps by new definitjons of sets of rules.

c. Ir s = {(2REPTZ S1 N1 R1 N2 R2 ...) or (ZcoNTZ $1 N1 R1 N2 R2...)

then it manufactures a new Q, adding N1 R1 N2 R2 ... to the
tront of the old Q and processing the first set of the new

Q; i.e. applying R1 to Slrgplaced-

d. H is the dictiomary used in all these cases, as a dictionary
for comparing by means of RESFMBLE; l also may bring cycles
with wmodes EXPR, SKEL, CONT ok REPT, which-do not affect

RN

3-83

[image: image156.png]4

HOW SETS CALL EACH OTHER 3-4

RESEMBLE, but which EDIT will recognize and will let pass
on to dictionary D used by REPLACE.

DEFINITION

The definition of FORMAT is

(FORMAT (LAMBOA (b H $) (COND
C(NULL (CDDR S})
(CONVERT* T H (REPLACE D (CADR S)))
{INULL (CDDOR 53}
{CONVERT#* (ASSOC (CADDR S) Q) H (REPLACE D (CADR 531 1))
LLAND)
(CONV {APPEND (CDDR 5) Qi H (REPLACE D (CADR S13))
ny

DESCRIPTION, HOW SETS CALL EACH OTHER

If R= (N1 C1 N2 €2 ...), where the Ci's are sets of

rules and thes Ni's, their corresponding names, by the pre-
vious implementation of FORMAT it can be seen that:

a.

b.

From any Cj we can call any other Cji, €.g. in Clh a rule
may exist whose skeleton contains (*REPT* (XXX YYY) ©€2).

Let us assume that some rule of Cji contains skeletons
which define new sets; e.g., in C3 there exists the
skeleton

(=CONT= (A 22Z R) M1 (= == =) M2 (= = = =) M3 (= = = =))
~ ————— ~——
rules that rules of rules of
correspond M2 M3
to M1

Then, as before, from any M; we can call any other Mj;
furthermore, from any Mj we can call C3, since C3 contains
them; but from no Mj can we call another Cj except C3.

From any rule -~- at any level -- I can say EBEGNZ to the
first set of R (not the first set of Q); this allows me
to apply the complete transformation process to partial
results. This is equivalent in LISP to calling oneself a
function, but with different arguments.

Presently (see 2.c., FORMAT, page 3-81 of the original),

a new Q is being made to which is added N1 R1 N2 R2 ... --
the definitions of new sets -- hence point c¢. above is
covered, and we can still call from M1 to C5, e.g., if

the rule C5 ordered us to go to C3 and from there to Mi;
this property may not prevail in later implementations

of CONVERT.

Certainly Cj cannot call upon internal sets at another Cjij;
e.g., from C2 we cannot call set M1, which is in C3,
without first going through C3 -- i.e. without first
calling C3, and the latter calling M1 (Q}ceptions to this
point are found in d.).

3-84

[image: image157.png]3-h =REPT=, *REPT*, ABLREVIATED FORMS OF EREPTE 3-4

5. FUNCTIONS USED

CONVERT* (page 3~3, original), REPLACE (page 3-49,
original), CONV (page 3-3, oxriginal), APPEND (page 3-69,
original

@ (=REPT= S1 N1 C1 N2 C2 ...)

© (#REPT* S1 N1 C1 N2 €2 ...) 1. S1 skeleton
N1, N2, ... names (atoms)
of the sets of rules
cr, €2, ...

2., PROPERTIES

The value of (*REPT* ...) is the content of what
(:REPT: ...) would produce. With the present dictionary D,
‘we substitute in the skeleton S1 to form a new expression E;
to this expression we apply the set of rules whose name

is N1; i.e. we apply to it C1.

In addition to defining N1 as a C1 set, the
skeleton may contain the -- additional -- sets of rules
¢2, €3, ..., with their corresponding names N2, N3, ...,
in the form of a dictionary of cycle 2.

The value of the skeleton (=REPT= S1 N1 C1 N2 C2 ..0
is the result of applying the rules of C1 to the new ex-
pression E formed by S1 replaced.

During the conversion C1 carries out on this ex-
pression, we return to the initial dictionary (the one
produced by ITLZI-ITLZM), incremented perhaps only by
variables defined by 2QUOTZ, XEXPRE and ZSKELZ

The above means that all the variables return to
their initial state of definition or non-definition;
the variables identified by RESEMBLE are not retained
on the left side of the rule.

ABBREVIATED FORMS

(ZREPTE S1 N1)

Indicates that we will transform the skeleton (pre-
viously substituted) S1 by way of the set of rules called
N1, which had, already been defined before (see also, "low
Sets call Each Other," page 3-81, original, to understand
what is an "already defined" set of rulei).

3-85

[image: image158.png]3-4 =BEGN=, *BEGN* 3-4

(ZrEPTE S1)

Indicates that we will transform the skeleton
Sireplaced by means of the current set of rules, i.e. the
set which contains this skeleton (ZREPTZ S1),.

Both are abbreviated forms of the more general form
iven on the previous page; both return to the dictionary L1
the initial one plus certain "temporary" variables).

Note: The symbol gREPTg must be understood as: "=REPT=
or *REPT*"; use = if the expression is desired into which
51 is transformed; use * if its content is desired; the
symbol £ does not exist either on the keyboard of the perforator
nor on the TELEX, and it is only understood as a convenient
notation employed in this Thesis.

L4, +IMPLEMENTATION

The part of REPLACE that manipulates =REPT= is
{({EQ (CAR s) (QUOTE =REPT=)) (FORMAT D L1 S))

The part of REPLACE that manipulates ¥REPT¥* is

((EQ (CAARS) (QUOTE ¥REPT*))
(APPEND (FORMAT D L1 (CAR S)) {REPLACE D (CDR S))))

5. FUNCTIONS USED

FORMAT (page 3-80, original), APPEND (page 3-69,
original).

© (=BEGN= $1)
© (+pran* s1) 1. $1 skeleton.

2. PROPERTIES

The value of (*BEGN* S1) is the content of the
value that would be produced by (=BEGN= S1).

With the present dictionary D, we substitute in
skeleton S1 to form a new expression E; to this expression
we apply the first set of the argument R of CONVERT, with
the dictionary LO.

This means that we apply CONVERT again to the
skeleton S1 replaced, with the initial variables, without
taking into account =QUOT=, =EXPR=, etc. This conversion
produces as a result an expression whigh is the value of

3-86

[image: image159.png]3-4 OPERATORS, ARTTHMETIC SKELETONS 3-4

the skeleton (=BEGN= S1); the value of (*BEGN* S1) is the
content of the same.

ABBREVIATED FORMS
ZBEGNE has no abbreviated forms.

4. IMPLEMENTATION

The part of REPLACE that operates with =BEGN= is
((EQ (caR s) (quote =BEGN=)) (CONV R LO (REPLACE D (CADR 8))))

The part of the function REPLACE which corresponds
to *BEGN* is none other than

((BQ (caar s) (QuoTe *BEGN*)) .
(APPEND (CONV R LO (REPLACE D (CADAR S))) (REPLACE D cDR 5))))

5. FUNCTIONS USED

CONV (page 3-3, original). FORMAT is not used.

OPERATORS

Since its implementation consists almost exclusively
of primitive functions, it will not be described; nevertheless,
the reader may consult the lists found in Chapter VII of
this Thesis. :

ARITHMETIC SKELETONS

. Ee
© (Pwse M Nz N3 Ly

N+ NZ+N3+,,,

[r-mus-»rfl‘uz; o = _ NI - N2 ”__ e
Q riwse 1 w2 w3 .ol B TR Ny o o
© oMM - s MMM
© (Bt ni 2y . "2‘3...,..., do NIMNZ v, .

© (=1ncP= N e : N e

O (=0ECP= N1y LI e

Legend: (a) Remainder of N1/N2.

On the 709, the N; are numerals; the results are numerals.
In CONVERT Q-32, the N; are numbers, Y

3-87

[image: image160.png]3-4 *DESN* 3-4

IMPLEMENTATION

The implementation of the arithmetic skeletons follows
almost entirely the corresponding functions in MBLISP, hence
we only give the list, without discussion.

€6E0 (CAR S) (QUOTE wPLUS=)} {SUM (REPLACE D (COR 51113
((EQ (CAR S) (QUOTE wMINSm)3 {MINUS. (REPLACE D (CPR $)113)
(€0 (CAR S) (OUOTE =TIMSa)} (PROD (REPLACE D (CDR S1II)
(4E0 (CAR S) {OUOTE @OIVD=)? {DIVIDE (REPLACE D (COR'$113)’
((EG (CAR S) {QUOTE wREMN=)) (REMN (REPLACE D (CDR $117)

((EQ (CAR S) (OUOTE wiNCRw1} (INCR (REPLACE O (CBBRSII))
t(EQ tCAR Sy (QUOTE eDECRa)) (DECR (REPLACE O (CABRSINI)

(SUM (LAMEDA (L) %1F (NULL L) (DEC (GUOTE 03 (2NOVAL SPLUS .

{CAR L) (SUM (CDR L)I13)11}

(MINUS (LAMBDA (L) (2NDVAL (SMINUS (CAR L) (CADR LI}

{PROD (LAMBDA (L) [IF (NULL L) (DEC (QUOTE 1)}
. (2NDVAL {STIMES (CAR L) {PRCO {(COR L)}111)}

(REMN (LAMBDA (L) (2RDVAL (SOTVIDE (CAR L) (CADR L}I}IIF

{DIVIOE (LAMBDA (L) {1STVAL .(SDIVIDE (CAR L) [CADR, L1111}

© (*DESN* S1) 1. S1 skeleton which, after sub-
stituted, must be with one

ATOM (not a list nor a
numeral).

2. PROPERTIES

The value of (*DESN* S1) is the fragment that
results from decomposing the value of S1 into its resulting
heollerith characters; it is a chain of atoms, each one of
which consists of a single character.

3. EXAMPLES
If D = (BR EXPR ESIME), S = ((*DESN* BR)) will

produce (E 5 I M E)

4, IMPLEMENTATION

The part of REPLACE which will disintegrate atoms
with *DESN¥* is

DIESN has no counterpart =DESN=. A

3-88

[image: image161.png]3-4

FRAG 3-4

(*FPRAG* S1) 1. S1 skeleton which, after sub-
stitution, must be a list. -~-

2. PROPERTIES

We replace dictionary D om skeleton 1, yielding
an expression whose content is the value of (*FRAG* S1).

3. EXAMPLES

D
s

= R (*FRAG* A)) will produce
(REPLACE D

gA SKEL (B B B; (B) SKEL (CAM))
RI
S) =(RRCAMCAMCAM).

4. IMPLEMENTATION

The part of REPLACE which converts expressions
into fragments is

((EQ (CAARS) (QUOTE *FRAG*))
(APPEND (REPLACE D (CADAR S)) (REPLACE D (CDR S)))

5. DESCRIPTION

Note that first we carry out the replacement on s1,
and then we make an APPEND of the result; thus, if
(REPLACE D $1) produces a skeleton which affects CDR,
for example, if (REPLACE D S$1) = (=SKEL= A B C), then
the value of (*FRAG* S1) is =SKEL= A B C, and this
fragment is added to the result of replacing CDR, hence
it no longer "has any effect." See in this respect
“general comment on substitutional pattern-fragments, "
page 2-19 of the original.

In general, all fragments produces by skeletons of
the form (*NAME* ...) are unable to modify the rest of
the skeleton to the right; for example,
S = ((*UNON* A B C) KL M), if D = (A EXPR (=QUOT= N1)
B EXPR () C EXPR (S1)), then the value of (¥UNON* A B C)
is =QUOT= N1 $1 so that the final result is
(=QUOT= N1 S1 K L M); in turn, if the fragment =QUOT= N1 S1
had been generated by a singlet in the SKEL mode, for

example, if S = (HHH K L M) and D = ((HHH) SKBL (=QUOT= N1 $1)),

then the result of (REPLACE D S) would be M, since it would
have defined N1 as §1 and K as L, and it would have sub~
stituted in M.

This phenomenon is also present in RESEMBLE, for
example, upon defining (PPP) PAT (=DEF= A B C)

Note: to convert a fragment to\an expression is a

3-89

[image: image162.png]3-4

4]

4]

(<]

SAME, EXPR, SKEL MODES, FRAGMENTS 3-4

question of enclosing it between parentheses: if

XXX = A B C, then (XXX) will have the value (A B C).
However, in a skeleton, to convert an expression to
frapgment requires the use of *FRAG¥; for example, if
A= (M N P) and I want to use in a skeleton the fragment
M N P, I must say (*FRAG* A); another way of doing the
same would be to say (*CONT* A €3 ((=OR=) ==))), C3 is
a set whose only rule fails, hence A returns without
modification, but *CONT* takes its content.

SAME

Its value is the content of expression E.
((EQ (CAR S) (QUOTE *SAME*)) (APPEND E (REPLACE D (CDR S))))

‘EXPR MODE, fragments. 1. D= (... (XXX) EXPR SOCIO ...)
XXX is an atom which appears
in D as a singlet under
the EXPR mode.
Its partner is a list; its
content is called associate
fragment.

2. PROPERTIES

An atom under the EXPR mode (fragments) is replaced
by the associate fragment, such as that found in D, i.e.
without later replacement.

4. IMPLEMENTATION

The part of REPLACE that manipulates atoms repre-
senting fragments in the EXPR mode is

((EQ (CAR Y) (QUOTE EXPR)}) (APPEND (CADR Y) (REPLACE D
(cDR 8))))

In the previous code, Y is connected to (ASSS0C* (CAR s) p).

SKEL MODE, fragments. 1. D= (... (XXX) SKEL SOCIO ...)
XXX is an atom which appears
in the dictionary D under
the SKEL mode.
Its partner is a list
whose content is treated
as a skeleton-fragment.

[image: image163.png]3-h REPT, CONT MODES (FRAGMENTS) 3-4

2. PROPERTIES

An atom under the SKEL mode (fragments) causes
its associate fragment to occupy its place in the skeleton
and the new (skeleton) thus formed is replaced. Thus
within the partner we recognize special symbols; further-
more, there exists the possibility that this atom modify
the rest of the skeleton to its right (some examples are
given in Chapter II, page 2-36 of the original).

4, TMPLEMENTATION

The part of REPLACE that manipulates atoms that
represent fragments in the SKEL mode is

((EQ (CAR Y) (QUOTE SKEL)) (REPLACE D (APPEND (CADR Y
(cDR $))))

© REPT MODE
© CONT MODE 1.D0=(... (Xxx) REPT (R1 R2 ...)

XXX is an atom that appears
in D as a singlet under
the REPT mode.

Its partner is a set of
rules.
It is a list.

2, PROPERTIES

The skeleton (XXX 67 U2 ...), where XXX is in the
REPT mode -- as a singlet -- causes the following:

a. The present dictionary is replaced in the list
(0106203 ...) [d.e. in the CDR of the skeleton], and
an expression is obtained (not a fragment) as the result
or value.

b. To the value obtained above in a. the partner
of XXX is applied. (which is a set of rules), under the
L1 dictionary (since a REPT is involved), and we obtain
an expression which is the value of the skeleton
(XXX 04 Cg ...)-

The CONT mode operates in the same manner, no more
than we use L* instead of L1; i.e. we preserve all the
variables upon applying the set to (013072 cee)

In summary: XXX 0102 +..), with

{XXX) CONT ((p1 s1) (P2 s2) g, is equivalent to.
(=CoNT= (0, Ty ...) ** ((P1 81 (P2.82) «..)).

3-91

[image: image164.png]3-4 RECURSIVE PART OF REPLACE ’ 3-4

The CONT and REPT modes always yield expressions
as a value, and it is necessary to use *FRAG* to obtain
fragments.

3. EXAMPLES

¥ = ((CD) REPT { ((X XXX) (XXX))) A EXPR n)
T ox) () 222 ¥ 2)
Ex ((MAR (CIAN (08))

R (C1UXYD) (DX (@ V) (00 2)))
)3

then (CONVERT M I E R) will be ((A R) (I A N) (S)), since
CD takes CDR from its "arguments;" these REPT and CONT
modes are similar to the functional notation used in
LISP.

4. IMPLEMENTATION

The part of REPLACE that manipulates the REPT and
CONT modes is

CLEG (CAR Y) (GUOTE REPT}) (CONVERT® {CADR Y1 L3
{REPLACE D (CDR $))1)

{LEQ [CAR Y) (QUOTE CONTII .{CONVERT® (CADR Y} Lw
(REPLACE D (CDR $3)3}

5. TIUNCTIONS USED

CONVERT* (page 3-3 of the original).

RECURSIVE PART OF REPLACE

The skeletons described above are the so-called basic
or primitive skeletons, i.e. those that replace recognizes
immediately.

More complex skeletons are evaluated or substituted,
making a CONS of the result of substituting CAR with the
result of substituting CDR; the corresponding code is

((AxD) (CONS (REPLACE D (CAR S)) (REPLACE D (CDR 8))))

The recursive condition, such as it is implemented, allows
skeletons of the following type to have meaning:

(VW=UNON= (ABC) (CDE)) = (VWAB c DE) = (VW E*UNON*
(ABC) € DE)));

3-92

[image: image165.png]3-4 EDIT 3-4

and the rule is that if contained in a skeleton, the last
element is one of the form (*NAME* 0102 «..), it may be
replaced by (the fragment) =NAME= ¢ @2 ...

The above rule may not be applicable for future CONVERT
processors; I do not consider it an essential part of the
language.

(EDIT L) 1. L dictionary of cycle 3,
launched by RESEMBLE when-
ever similarity is encoun-
tered.

2. TFUNCTION

The value of (EDIT L) is a dictionary similar to L, but
modified to the modes characteristic of REPLACE,

The modifications are:

CYCLES IN L CYCLES IN (EDIT L)

X iR spcro X EXPR 5OCTO N
. . ¢ .
(XXX) VAR (FPUR "":lb (XOX) EXPR (1ista restaureda)

tador tads
(XXX} REC (’;‘:;‘ '“:3) XXX EXPR itan(:wmxp. a1 2% pumeral |
X SEQ (pat A B € .0} X BXPR (ABC,.)
X MSS (pat A B C . X EXPR (A B C.y4)
X EXPR SOCIO X EXPR SOCIO
X SKEL 50CTO X SKEL SOCIO
(XXX) REPT SOCIO - {XXX) KEPT SOCTO
(XXX} CONT SOGI0 . . (KXX) CONT 50CTO

the other modes will not be copied

Legend: (a) Observer; (b) Restored list; (¢} Atom
corresponding to the second numeral.

3. DEFINITION

The definition of EDIT is

[image: image166.png]3-b RESTAUR [restore], EDIT ON THE Q-32 3-4

{EDIT (LAMBDA (L) (COND

foRuLL L) L) .)

4(EQ (CADR Ly tQUOTE VAR)) (CONS (CAR k) (CONS {QUOTE EXPRY.(CONS
{IF (ATOM (CAR L}) (CADDR L)
(RESTAUR {CAADOR L)}) (EDIT {CODDR LI1) 31} .

$1EQ (CADR L3 (QUOTE REC}) (CONSICAAR L) (CONS (OUOTE EXPR) (CONS
(UNDEC CAODR L)} (EDIT {CDDOR L11) 31)

(1OR (€Q (CADR L) (QUOTE SEQJ) (EQ (CADR L) (QUOTE MSS)))
(CONS {CAR L) {CONS (QUOTE EXPR) (CONS (CDADOR L}
(EDIT (CODDR L1131)) .

£00R {EQ (CADR L) (QUOTE EXPR}) (EQ {CADR L) (QUOTE SKEL1}
(EQ [CADR L} (QUOTE CONT}) (EQ [CADR L) {QUOTE REPT}))
{CONS (CAR L) (CONS {CADR L) {CONS (CADDR L} (EDIT (CDDOR L1}
N B

LUAND) (EDIT [CODOR L1V}

"

5. FUNCTIONS USED

RESTAUR (described below).
RESTAUR [restore] passes from the notation of two observers to
that of a list; for example, E = ((C AMI S A S) (54 S)) is
transformed inte C A M I).

(RESTAUR (LAMBDA (E) (IF EQ
E (CADR (cabpr L))) (LIsT) (CONS (CAR E) (RESTAUR (CDR E))))))

The definition of EDIT in the CONVERT version found running in
the Q-32 computer of Santa Monica, California, USA, is

(EDIT (LAMBDA (L)
{eono ((nuLL L) L
({€Q (CADR_L) {QUOTE VAR))
(Cons (cAR L) g
{cons (QUOTE EXPR)
(cons (IF (aTomp (CAR L)) (CADDR L) {(RESTAUR {cAADOR L))
(EDIT {CQODR L))}))) ~
((Ea (CACR L) {QUOTE REC)}
{Cohs {CAR L)
(CoNs {QUOTE ExPR) (CONS (CADDR L) {E04T (CODOR L)))ggi
(ioa (E%c(ﬁkn? L) (QuoTE SEQ}) (EQ {CADR L) (QUOTE wss
CONS AR L N
(CONs {QUOTE EXPR) (CONMS {COADDR L) {EDIT {CODDR L))))))
{(0R (EQ (CADR L) (QUOTE EXPR)) -
250 CADR L) (QUOTE BKEL;)
EG (CAOR Ly (QUOTE CONT)) (€0 (CADR L) (QUOTE REPT)))-
{cons (CaR L.
(CONS_(CADR L) {cons (CADDR L) (EDIT (CooDR L)}))))
(T (EDiT {(coooR L}})))J)

3-94

[image: image167.png]CHAPTER IV

HOW TO USE THE CONVERT SYSTEM

As can be observed in
Chapter VII, CONVERT

is a LISP function,

hence the reader familiar
with MBLISP or with

LISP 1.5 may omit

Chapter IV.

[image: image168.png]LES PREPARATION OF A PROGRAM b1

IV. HOW TO USE THE CONVERT SYSTEM

Presently, CONVERT is implemented on the IBM-709
computer of the Instituto Politecnico Nacional, and
AN/FSQ-32 of Systems Developemnt Corporation, Santa Monica,
California, USA; in both it is interpreted by LISP.

4.1 PREPARATION OF A PROGRAM

As in LISP, in the CONVERT programs the excess blanks
are ignored, and one is sufficient to designate atoms,
Furthermore, parentheses have the common meaning they have
in LISP, i.e. they are used to delimit lists.

Let us assume that we want to run a program alternating
two lists of the same length, but one from left to right,
and ,the other from right to left, i.e.

If A

Al A2 ,,, An
B1 B2 . Bn
the result must be (A1 Bn A2 Bn-1 A3 By. ... An B1).

The definition of this function could be:

(ALTERNR A B) 1. A, B lists of equal length
same number of elements).

2. FUNCTION

The value of (ALTERNR A B) is the list that contains
the elements of A in the same order and, alternatively with
them, but in the inverse order, the elements of B.

Since CONVERT only operates with a single expression,
and ALTERNR is a function of two variables, we make a list
of them to produce the argument E of CONVERT.

In reality, the program consists of the single rule
(((xox) (vvy v)) (x ¥ (#BEGN* ((xxX) (¥¥¥)))))
The complete program appears on the following sheet.

Finally, the definition in LISP is the following: -

(ALTERNR (LAMBDA (A B) (CONVERT (QUOTE
QUOTE (X Y (xxx) (YYY)))
LIST A B)
QUOTE (C1
§§§X Xxx) (YYY Y)) (X Y (*REPT* ((xxX) (YvY))))) - (== ())
) N

[image: image169.png]PREPARATION OF A PROGRAM

] [
o
5 T :
T (XYoo _(m) "
H (list AB)
Pt Lrclnrs
L
Cop(al .
P L Cooxmd(yyy v) (XY Coreptn (o) rynd)d]
=03 : ¢ : :
3
3
¥
d
Jq
i 7
L
COBVERT aoding shest L7217 2 . CIEA-IPR

[image: image170.png]42 709 OPERATION, OPERATION ON THE Q-32 4-3

Note the (QUOTE ...)'s introduced in M, T and R.

We must define this function; on the 709 this is
done with (DEFINE. (ALTERNR)

This means ahead of the cards constituting the definition
of AL;ERNR we place the card (DEFINE and at the end of the
card }.

In Q-32, we would say

DEFINE ({ (ALTERNR)))

If we wish to’use this program to "alternate" lists {1 2 3 &4 5)
and (A B C D E), on the Q-32 computer we would say (we would
write), after having defined ALTERNR,

ALTERNR ((1 23 4L 4) (ABCDE))
PUENE

' Note: name of the function
and a ‘list with the arguments.

and the contestation would be:
(1E2D3¢Ch4B5A)
In MBLISP, 709, following the cards (DEFINE)

we would put
(APPLY ALTERNR ((1 2 3 4 5) (ABCDE)))
4 -

/

Note: APPLY name list of arguments
of the
function
With the result being the same, sinc (1 E 2D 3 C 4 B 5 A)

4-2. 709 OPERATION

1. CONVERT tape in B-7

2. Program in A-2 {input tape). The program used as an
example is shown on page 4-4, original, such as it must
read on tape A-2. Note the cards of COMMENT, NEXTJOB
and EOF.

3. Call CONVERT from B-7; Card LOAD B7 in the reader.
Start in the reader; (READY light)

reset N
load cards in CPU 709

The result appears on the A-3 tape (output).

4-3. OPERATION ON Q-32 TSS (Time Sharing System)

1. LOGIN -

[image: image171.png]- ?—R"

RNt IERU (Figita t‘?ﬂmffﬁ']) "l 7
Jerly pmerre T T o T
el RISt Ry S Glem L e -
(n.,’urlfcna) EXRIGERE GABL] :1‘?’2:5,&) L2 S
ZPEPLY ALTERR (
(-\F’ﬁ_(ALTERMR L T O

2 i

‘_«1’23‘3 ST

T

it

i o

“LGUOTE (C1 €

Y
MR LI Y

(lﬁﬂhr (et

ISR

A

[R
Tt A TR TR e -1J...-.‘-m-.=h—.h

LS

TIEEaaTHIe T 'al lluﬂu\nuu‘u‘[n:za T
U IIL11|EI I II|lI'HII|||III|Il||I "
ey xn:.uu 2220 e :
: (J:ll’xun‘nnl hraigsss .m:ﬁ lr%l.ilnl‘lﬂ:zf‘un o] an‘nu:'x vl
3”3’?5’5',‘"‘3"”8! ;_‘Eh:“ ':L‘sl‘&l!ll ll"l4lill‘!‘55‘! ELL]

I "‘I'l"“ pesnegs FEe i)x-lilﬁlﬂlllltlll(.l.”‘!
nnr,uul'nnnnnl:lrml[nn::lnv nnvnnJ |ununnnnlnluvn;y
Jaresssashles NETERIERRE T} 1 & KFEINIE] ll H
t-m'.‘nnln.; ST

Vip e {EE!

[image: image172.png]4-3 ERRORS, PROGRAM AIDS 4-4

2. LOAD CONVERT

3. DEFINE ((
(ALTERNR....)

)]
4. ALTERNR (21 234 53
ABCDE

)

5. other examples

As we see, to use CONVERT language, LISP functions
are defined which use the CONVERT function.

L.4 ERROR MESSAGES

Common error messages in LISP are handled, such as
MISSING ARGUMENT, PUSHDOWN LIST EXHAUSTED, OUT OF BPS, etec.,
and, on the 709, if the job is to make an APPEND and one of
the arguments is an atom (see CONVERTERROR, page 3-8 of the
original).

Program Aids

The pseudo-rule (=COM= here any convenient comment)
allows us to insert comments in the body of the program; it
will be ignored by the processor. If the comments have
parentheses, they must be balanced,

The pseudo-rule (=PRI= S1) prints skeleton S1, replaced,
but is otherwise ignored by CONVERT.

It is useful, particularly on the 709, to trace programs,
since partial results may be printed, for example, with

(=PRI= =SAME=)
Or even with some more elaborate card:

(=PRI= (EL ARGUM (=QUOT= X) ES X == (=QUOT= YYY) BES YYY ==
[the argument] [is] E ES =SAME=))

Furthermore, the functions LISP PRINT, TRACE and (in
MBLISP) IIUSMEA, are disposed of, to trace LISP functions;
for example, it is useful to scent RESEMBLE or REPLACE; EDIT.

The skeleton is also disposed of in CONVERT (=PRNT= S1),
whose value is the result of replacing S1, but which prints on
the output tape [in Q-32, it prints on the teletype] the value
of S1 replaced.

The description of =PRI= is found oq-pAge 3-4, original,
undexr CONV*, The description of =PRNT= is fdund on page 3=59,
original.

-5

[image: image173.png]TAPE A=2 REWOUND +0 (GCTAL) RECORDS

(COMMENT GUZMAN ARENAS

CONVERT ==wa ALTERNR = TESIS)
DEF INE . .
(ALTERNR (LAMADA {A @) (CONVERT
(QUOTE (1)) .
TQUOTF X ¥ &XXX} (YYY)1) .
(LIST A &)

(QUOTE (€1 ¢ R
CHEX XXXD LYYY Y3 X ¥ (*REPT* CAXXX)I(YYY)D)D)
tam (3}
Ty
N

TAPE A=3 REWOUND +0 (OCTAL} HECORDS

(COMMENT GUZMAN ARENAS ‘smuz CONVFRT cxux ALTERNR =xms TESISiesvse

(hFFTNE [ALTERNR {LAMaDA (A R (CONVERT (QUOIE ()) (QUOTE (X ¥ (XXX} {¥
¥r11r LIST A R) (BUOTF (€3 (644X XXX £YYY Y)) (X ¥ (¥KEPT® (XXX} {YY
Y3133 Cae (31000010 0a0

FUNCTIONS DEFINED oo ALTERNR«

(aPPLY ALTERNR €41 2 34 %) €A B'C D EI))
MMEZDAIC4DS Ales L

1APPLY ALTERNR (t) &1
{ene

poas X e
(APPLY ALTERNR (€{C & R) {C O R) (€ K Ry (F R F) (AR €y IC P FIAE
%12 31 (103 () (11 IERU F151CA (RODHAD) (AGOSTOGS) (CTEAL 1.PuMs =%
1dae LAugust]

(1¢TA R) %% (C D R} IePuNe (E K R) (CIEA) (F R E} (AGOSTO6S) (A 6 C) (R
00M30) (C D E) FISICA {E F) IERU (1 2 3) 10} 1 1),

{APPLY ALTERNR §(4() 1) (}) IERU FISICA (KOOM3D) (AGOSTO65) (CIEA} TeP.
No #%) {(C AR} LC D R) (E KR) (FRE) (ABCH (CDF) LEF G (1221
1ides

L6y €3 (3),41 2 3) IFRU (E F G) FISICA (€ D F} (ROOM30) (A B () (AGOST
065) (F R F) {CIEA) (E K R) 1e¢PeNs (C D R) ** (C A R)losaes

CNEXTIOR) o0 -

-

h-6

